Sains Malaysiana 29:119-128 (2000) Pengajian Kuantitatif /
Quantitative Studies
Duality in Multiobjective Fractional Programming Problems
with Strong Pseudoinvexity Constraints
P. Kanniappan
Department of Mathematics
Gandhigram Rural
Institute Gandhigram-624302, India
P. Pandian
Department of Mathematics
Mepco Schlenk Engg.
College Mepco Nagar- 626005, India
ABSTRACT
A parametric approach is used to obtain necessary and suffient conditions for feasible point to be a properly efficient solution and duality results are established for multiobjective fractional programming problems with strong pseudoinvexity constraints.
ABSTRAK
Pendekatan parameter digunakan untuk mendapatkan syarat perlu dan cukup untuk suatu titik tersaurkan menjadi suatu penyelesaian yang cekap. Keputusan dualnya diperoleh untuk masalah pengaturcaraan pecahan multimatlamat dengan kekangan kepseudoinveksan yang kuat.
RUJUKAN/REFERENCES
Bector, C.R., Chandra S. & Singh, C. 1990. Duality in multiobjective fractional programming in generalized convexity and fractional Programming with Economic Applications. In Cambini, A. Castagnoli, E. Martien, L. Mazzoleni, P. & Schaible, S. (Ed.): 232-241. Berlin: Springer-Verlag.
Ben-Israel, A. & Mond, B. 1969. What is invexity? J. Aust. Math. Soc. (Series B). 28: 1-9.
Egudo, R.R. 1989. Proper efficiency and multiobjective duality in nonlinear programming. J. In. Opt. Sci. 8: 155-166.
Geoffrion, A.M. 1968. Proper efficiency and the theory of vector maximization. J. Math. Anal. and Appl. 2: 618-630.
Hanson, M.A. 1981. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80: 545-550.
Kanniappan, P. & Pandian, P. 1995. Duality for nonlinear programming problems with strong pseudoinvexity constraints. Opsearch. 32 : 95 -104.
Kaul, R.N. & Lyall, V. 1989. A note on nonlinear fractional vector maximization. Opsearch. 26: 108-121.
Suneja, S. K. & Gupta, S. 1990. Duality in multiple objective fractional programming problems involving non-convex functions. Opsearch. 27: 239-253.
Weir, T. 1986. A dual for a multiobjective fractional programming problem. J. Int. Opt. Sci. 7: 261-269.
Weir, T. 1986. A duality theorem for a multiple objective fractional optimization problem. Bull. Aust. Math. Soc. 34: 415-425.
Weir, T. 1988. A note on invex functions and duality in multiple objective optimization. Opsearch. 24: 98-104.
Weir, T. 1989. On quality in multiobjective fractional Programming. Opsearch. 26: 151-158.
Weir, T. 1990. On strong pseudoinvexity in nonlinear programming duality. Opsearch. 27: 117-121.
|