| Sains  Malaysiana 34(1 ):  1-6 (2005)   Penghasilan Sirap Glukosa  Berfruktosa Tinggi dari Kanji Ubi Keledek Msp94 (Production of High Fructose Glucose Syrup from Sweet Potato  MSP94 Starch)  
 Hasnah Haron Jabatan Pemakanan dan Dietetik Fakulti Sains Kesihatan Bersekutu Universiti Kebangsaan Malaysia Jalan Raja Muda Abdul Aziz 50300 Kuala Lumpur   Osman Hassan dan Mamot Said Program Sains Makanan Pusat Pengajian Sains Kimia dan Teknologi Makanan Fakulti Sains dan Teknologi Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor D.E.   Mohamad Hanif Mohamad Jamil Malaysia Agricultural Research And Development  Institute Strategic Environment and Natural Resources Research Centre MARDI P.O. Box 12301 50774 Kuala Lumpur       ABSTRAK   Kajian  ini merangkumi pencirian fizikokimia kanji yang diekstrak daripada ubi keledek  Msp94 dan penghasilan sirap glukosa berfruktosa tinggi daripada kanji ini.  Kanji ubi keledek Msp94 mengandungi 7.3% air, 0.2% protein, 0.4% lemak, 1.3%  abu total, 94.8% karbohidrat total, 83.0% kanji dan 20.6% amilosa ketara.  Purata saiz granul kanji adalah 13-14 mm, berbentuk bulat, poligon dan bentuk  yang tidak tetap. Hidrolisis berenzim menggunakan gabungan enzim  glukoamilase-pululanase dalam proses sakarifikasi, yang dijalankan ke atas  kanji ubi keledek Msp94 selama 24, 48, 72 jam menghasilkan hidrolisat kanji  dengan setaraan dekstrosa (DE) masing-masing  pada 94.8, 99.1, 99.3. 1ni diikuti dengan kelikatan hidrolisat kanji yang  semakin menurun. Penukaran kanji Msp94 kepada peratus glukosa adalah sebanyak  97.1 %, 109.5% dan 103.2% setelah  dihidrolisis selama 24,48 dan 72 jam. Hidrolisat kanji Msp94 ditulenkan  menggunakan tiga jenis resin penukar ion dan diisomer kepada sirap berfruktosa  tinggi menggunakan enzim glukosa isomerase (Sweetzyme T). Kandungan fruktosa  (43.8-46.5%) dalam sirap Msp94 yang telah diisomer adalah setara dengan  kandunganfruktosa (44%) dalam sirap komersial, High Fructose Corn Syrup (HFCS) 42.    Kata  kunci: hidrolisis kanji, pemanis, setaraan dekstrosa, sirap glukosa berfruktosa  tinggi, ubi keledek Msp94      ABSTRACT   This  study comprised of physicochemical characterizations of starch extracted from  Msp94 sweet potato tuber and production of high fructose glucose syrup from the  starch. Msp94 sweet potato starch consisted of 7.3% water, 0.2% protein, 0.4%  fat, 1.3% total ash, 94.8% total carbohydrates, 83.0% starch and 20.6% apparent  amylose. The starch granules were spherical, polygonal and irregular in shapes  with the size of 13-14 mm. Enzymatic hydrolysis of Msp94 sweet potato starch  for 24,48, 72 hours, using a mixture of amyglucosidase-pullulanase enzymes  during saccharification process, produced starch hydrolysates with dextrose  equivalent (DE) of 94.8, 99.1, 99.3  respectively. This is followed by reduction in viscosity of the starch  hydrolysates. Conversion of the Msp94 starch to percent of glucose after  hydrolysing for 24,48 and 72 hours were 97.1%, 109.5% and 103.2%, respectively.  Msp94 starch hydrolysates was then purified using three types of ion exchange  resins and isomerized to highfructose syrup using glucose isomerase enzyme  (Sweetzyme T). Thefructose content in isomerized Msp94 syrup was (43.8-46.5%)  was comparable to the fructose content (44%) in commercial High Fructose Corn  Syrup (HFCS) 42.    Keywords:  starch hydrolysis, sweetener, dextrose equivalent, high fructose glucose syrup,  sweet potato Msp94      RUJUKAN/REFERENCES   Association of Official Analytical  Chemists (AOAC). 1984. Separations of sugars in honey using HPLC. Official  Methods of Analysis. 14th ed. USA: AOAC, Inc.  Association of Official Analytical  Chemists (AOAC). 1990. Official Methods of Analysis. 15th ed.  USA: AOAC, Inc.  Berghofer, E. & Sarhaddar, S. 1988.  Production of glucose and high fructose syrup by enzymatic direct hydrolysis of  cassava roots. Process Biochemistry December: 188-194.  Englyst, H.N. & Hudson, G.J. 1987.  Colorimetric method for routine measurement of dietary fibre as  non-polysaccharides. A comparison with gas liquid chromatography. Food  Chemistry 24(1): 63-76.  Gallant, D.J. Bewa, H., Buy, Q.H.,  Bouchet, B., Szylit, O. & Sealy, L. 1982. On ultrastructural and  nutritional aspects of some tropical tuber starches. Starch 34(8):  255-262.  Gantelet, H. & Duchiron, F. 1999. A  new pullulanase from a hyperthermophilic archaeon for starch hydrolysis. Biotechnology  Letters 21: 71-75  Gorinstein, S., Oates, E.G., Chang, S.  M. & Lii, C.Y 1994. Enzymatic hydrolysis of sago starch. Food Chemistry 49:411-417.  Ishak Mohd. Yusuff & ZainaIAbidin  Mohd. Yusof. SIRlM. 1995. High Fructose Glucose Syrup Production from sago  starch: Lab scale study. Simposium Biologi Kebangsaan Kedua. 1618 Mei,  Universiti Kebangsaan Malaysia Bangi.  Jane, J., Kasemsuwan, T., Leas, S., lA,  A., Zobel, H., IL, D. &  Robyt, J.F. 1994. Anthology of Starch Granule Morphology by SEM. Starch 46:  121-129.  Khalid, N.M. & Markakis, P. 1981.  Production of High Fructose Syrup from Cassava starch. The Quality of Foods  and Beverages. Chemistry and Technology 1: 319-326.  Khatijah, I. & Patimah, H. 1997.  Physico-chemical properties of cross-linked tuber starches. J. Trap. Agric.  and Journal Tropical Agriculture and Food Science 25(2): 179-185.  Lii, E.Y. & Chang, YH. 1991. Study  of starch in Taiwan. Food Reviews International 7(2): 185-203.  Madhusudhan, M., Susheelamma, N.S.  & Tharanathan, R.N. 1993. Studies on sweet potato. Part II : Isolation and  characterization of starch. Starch 45(1): 8-12.  Malaysia Standard. 1994. Specification  for industrial tapioca starch. MS 155. MARDI. 1994. MSP 94. Klon Ubi Keledek  Baru. K.L.: MARDI Publication.  Nebesny, E. 1989. Carbohydrate  compositions and molecular structure of dextrins in enzymatic high conversion  starch syrups. Starch 41(11): 431-435.  Nebesny, E. 1993. Changes of  carbohydrates compositions during enzymatic hydrolysis of starches of various  origin. Starch 45(12): 426-429.  Noda, T., Takahata, Y & Nagata, T.  1994. Properties of sweet potato starches from different tissue zones. Starch 44(10):365-368.  Novo NordiskApplication  Sheet. 1991. Use of Sweetzyme T in the production of high fructose syrup.  Enzyme Process Division. B 396c-GB 3000. May.  Olsen, H.S. 1995. Enzymatic production  of glucose syrup. Dlm. Dziedzic, S.Z. & Kearsly, M.W. (pnyt), Handbook  of Starch Hydrolysis Products and their Derivatives, hlm. 26. Glasgow:  Blackie Academic & Professional.  Pontoh, L. & Low, N.H. 1995.  Glucose syrup production from Indonesian palm and cassava starch. Food  Research International 28: 379-385.  Schenck, F.w. & Hebeda, R.E. 1992.  Starch Hydrolysis Products: An Introduction and History. In. Schenck, F.W.  & Hebeda, R.E. (pnyt), Starch Hydrolysis Products. Worldwide Technology,  Production and Applications, hlm. 1. New York:VCH Publishers.  Siti Mariam Md. Zaino 1998. Ubi keledek  'Gendut' pengganti kentang. Utusan Malaysia, 15 Disember: 2.  Svanholm, H. 1985. Production of high  fructose syrup. Novo Enzymes R&D. A-05942-GB.  Swinkels, J.J.M. 1985. Composition and  properties of commercial native starches. Starch 37(1): 1-5.  Tian, S .J., Rickard, J .E. &  Blanshard J.M. V. 1991. Physicochemical Properties of Sweet Potato Starch. Journal  of Science & Food  Agriculture 57: 459-490.  Yaletudie, J.E., Colonna, P., Bouchet,  B. & Gallant, D.J. 1993. Hydrolysis of tropical tuber starches by bacterial  and pancreatic alpha amylases. Starch 45(8): 270-276.  William, P.E., Kuzina, F.D. &  Hlynka, I. 1970. A rapid colorimetric procedure for estimating the amylose  content of starches and flour. Cereal Chemistry 47: 411.        |