| Sains  Malaysiana 34(1): 113-118 (2005)    Pendekatan Pemodelan Multitahap ke Atas Data Hierarki Pencapaian Pelajar (Multilevel Approach on Hierachically Structured  Data of Student's Performance)     Nur Riza M. Suradi &  Teh Siew Lan Pusat Pengajian Sains  Matematik Fakulti Sains dan Matematik Universiti Kebangsaan  Malaysia 43600 UKM Bangi Selangor, D.E.       ABSTRAK   Rencana  ini membincangkan pendekatan multitahap dalam pembinaan model penganggaran  pencapaian pelajar yang mempunyai struktur data hierarki. Model multitahap yang  mengambil kira variasi data yang berpunca dari pengelompokan data pada  tahap-tahap yang berbeza dibandingkan dengan model regresi linear yang  menggunakan kaedah kuasa dua terkecil. Seterusnya kajian ini menganggar  sumbangan faktor jantina dan etnik ke atas pencapaian pelajar. Data pencapaian  akademik seramai 866 pelajar fakulti sains di sebuah institusi pengajian tinggi  telah diperoleh dan dianalisis. Data pelajar ini berstruktur hierarki dengan  dua tahap, iaitu pelajar dan jabatan. Hasil kajian menunjukkan kedua-dua kaedah  memberikan penganggaran yang berbeza. Malah, didapati model multitahap yang memasukkan  variasi dari tahap-tahap berlainan dan pembolehubah peramal dari tahap yang  lebih tinggi memberikan padanan model lebih baik bagi menerangkan pencapaian  pelajar.    Kata  kunci: model multitahap, struktur hierarki, pencapaian pelajar      ABSTRACT   This  paper discusses the multilevel approach in constructing a model for estimating  hierarchically structured data of students' performance. Multilevel models that  take into account variation from the clustering of data in different levels are  compared to regression models using least squares method. This study also  estimates the contributions of gender and ethnic factors on students'  performance. Performance data of866 students in a science faculty in an  institution of higher learning is obtained and analyzed. This data is  hierarchically structured with two levels, namely students and departments.  Analysis findings show different parameter estimates for both models. Also, the  multilevel model which incorporates variability from different levels and  predictors from higher levels is found to provide a better fit for model  explaining students' performance.    Keywords:  multilevel model, hierarchy structure, students' performance      RUJUKAN/REFERENCES   Burstein, L., Fischer, K.H. &  Miller, M.D. 1980.  The multilevel  effects of background on science achievement: A cross national comparison. Sociology  of Education 53: 215-225. Goldstein, H. 1997. Methods in school  effectiveness research. School Effectiveness and School Improvement 8:  369-395.  Goldstein H. 1995. Multilevel  statistical models. Ed. ke-2. London: Edward Arnold.  Goldstein, H. 1979. Some Models for  Analyzing Longitudinal Data on Educational Attainment. J.R. Statist. Soc. A. 142(4):407-442.  Hox, J. J. 1998. Multilevel Modeling:  When and why? pp. 147154. In 1. Balderjahn, R. Mathar & M. Schader (Eds.), Classification, data analysis, and  data highways. New York: Springer Verlag.  Kreft, I.G.G. 1996. Are Multilevel  Techniques Necessary? An Overview, including Simulation Studies. (atas talian)  http://www.calstatela.edu  /faculty/ikreft/ quarterly/ quarterly.html (13 Ian 2004).  Kreft, I.G.G. & de Leeuw, J. 1998. Introducing multilevel modelling. London:  SAGE Publication.  Lineberry, R.L. 2003. Research on  schools. Social Science Quarterly 84(3): 485-542.  Longford, N. T. 1993. Random  Coefficient Models. University Press, Inc. New York: Oxford.  Monette, G., Shao, O. & Kwan, E. 2002. A first look at  multilevel models institute for social research. (atas talian) http://www.math.yorku.ca/-georges/OptPortFontDeflts.pdf (13 Jan 2004).  Nur Riza M. S. & Mokhtar A. 1999. Multilevel modeling for hierarchical and  clustered data. Presented at One-day Seminar on Statistics, UM, Feb. 6, 1999.  Rasbash J., Browne W., Goldstein H.,  Yang M., Plewis I., Healy M., Woodhouse G., Draper D., Langford I. & Lewis T. 2000. A user's guide to  MLwiN: multilevel models project Institute of Education University of London, versi  ke-2.1.  Raudenbush, S. 1995. Re-examining,  Reaffirming and Improving Applications of Hierarchical Models. Journal of  Educational and Behavioral Statistics 20(2). Snijders T. A. B. & Bosker R. J. 1999. Multilevel  analysis: an introduction to basic and advanced multilevel modelling. London:  SAGE Publications.  Vann den Eden, P. & Hiiettner, H. J.M. 1982. Multilevel  Research. Current Sociology 30: 1-117.        |