| Sains  Malaysiana 34(1): 119-123 (2005)   A Multivariate Measure of  Dispersion and its Limiting Distribution (Ukuran Multivariat bagi Dispersi dan Hal Taburannya)     Suwanda bin Idris Department of Mathematics Institut Teknologi Bandung JI. Ganesha 10  Bandung 40132, Indonesia       ABSTRAK   Jumlah  Varians dan Varians Teritlak kebiasaannya digunakan sebagai ukuran dispersi  multivariate. Namun begitu, kedua-dua statistik ini mempunyai beberapa  kelemahan. Dalam tulisan ini akan dicadankgan satu ukuran dispersi multivariate  yang baru, dikenali sebagai varians bervektor (VV) yang merupakan suatu hasil  darab terkedalam bagi set pengoperasi yang tertakrif ke atas suatu ruang  Hilbert-Smith. Oleh kerana taburan pensampilan tepat dari statistik vv tersebut  sangat sukar untuk ditentukan, maka taburan pensampilan asimtot telah  diperolehi.     ABSTRACT   Total  Variance (TV) and Generalized Variance (GV) are commonly used as a measure  multivariate dispersion.  However, these  two statistics has some drawbacks. This paper proposes a new measure of multivariate  dispersion, named Vectorial Variance (VV) an inner product for set of operators  defined on a Hilbert-Smith space. Since, the  exact sampling distribution of VV is difficult to find, therefore the  asymptotic sampling distribution is obtained.     RUJUKAN/REFERENCES   Anderson, T.W. 1984. An Introduction  to Multivariate Statistical Analysis. New York: Wiley. Djauhari,  M.A. 2002. Newsletter, Data Analysis Research Group, Dept. of Math. ITB. Escoufier, Y. 1977. Operators Related  to a Data Matrix. Recent Developments in Statistics. Nort-Holand  Publ.Comp.  Lazraq, A. & Cleroux, R. 1992. Test D'Homogeneite Entre Indices De  Redondance Pour Des Lois Elliptiques.statistitique Appliquee XXXX (3):  19-33.  Mardia, K.Y., Kent, J.T. & Bibby, J.M. 1979. Multivariate  Analysis, London: Academic Press Inc. Ltd.  Marsden, J.E. & Tromba, A.I, 1996. Vector Calculus, 4th Edition, New  York: EW.H. Freeman and Company.  Montgomery, D.C. 2001. Introduction  to Statistical Quality Control, 4th Edition. New York: John  Wiley & Sons.  Muirhead, R.I. 1982. Aspect of  Multivariate Statistical Theory. New York: Wiley.  Pena, D. & Rodriguez, J. 2000. Descriptive Measures of Multivariate  Scatter and LinearDependence http:// halweb. uc3 m. es/ esp/Personal/pe  rsonas/dpena/articles/ JMVA03.PDF  Press, S.J. 1972. Applied  Multivariate Analysis. Chicago: Holt, Rinehart and Winston.  Serfling, R.I. 1980. Approximation  Theorems of Mathematical Statistics. New York: Wiley.  Wilks, S. S. 1963. Multivariate  statistical outliers. Sankhya 25: 407-426        |