Sains Malaysiana 34(1): 133-138 (2005)

 

Kesan Medan Magnet Menegak ke atas

Lengkung Sut Olakan Benard-Marangoni Mantap
dalam
Lapisan Mengufuk Bendalir

(The Effect of a Vertical Magnetic Field on the Onset of Study Bernard-Marangoni

Convection in a Horizontal Layer of Electrically Conducting Fluid)

 

 

Ruwaidiah Idris

Jabatan Matematik

Fakulti Sains dan Teknologi

Kolej Universiti Sains Dan Teknologi Malaysia

Mengabang Telipot

21030 Kuala Terengganu

Terengganu D. I, Malaysia

 

Ishak Hashim

Pusat Pengajian Sains Matematik

Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E., Malaysia

 

 

ABSTRAK

 

Dalam makalah ini kesan medan magnet menegak seragam ke atas lengkung sut permulaan olakan mantap Benard-Marangoni dalam lapisan bendalir mengufuk berpengalir elektrik dikaji tertakluk kepada kecerunan suhu yang seragam dalam had asimptot gelombang pendek. Kami dapati medan magnet tidak memberi kesan kepada sebutan utama lengkung sut dalam had gelombang pendek.

 

 

ABSTRACT

 

In this work we use an analytical technique to analyse the effect of a vertical uniform magnetic field on the onset of steady Benard-Marangoni convection in a horizontal layer of electrically conducting fluid subject to a uniform vertical temperature gradient in the asymptotic limit short waves.  We found that in the limit of short waves, the leading order expression for the marginal curve is not affected by the magnetic field.

 

 

RUJUKAN/REFERENCES

 

Chandrasekhar, S. 1961. Hydrodynamics and Hydromagnetic Stability. UK: Oxford University Press.

Hashim, I. 2000. The effect of a uniform vertical magnetic field on the onset of steady Marangoni convection in semi-­infinitely deep layer of conducting fluid. Matematika 16 (1): 1-10.

Hashim, I. & Wilson, S. K. 1999a. The effect of a uniform vertical magnetic field on the onset of steady Marangoni convection in a horizontal layer of conducting fluid. Int. J. Heat and Mass Transfer 42: 525-533.

Hashim, I. & Wilson, S. K. 1999b. The effect of a uniform vertical magnetic field on the onset of oscillatory Marangoni convection in a horizontal layer of conducting fluid. Acta Mechanica 132: 129-146.

Hashim, I. & Wilson, S. K. 1999c. The onset of oscillatory Marangoni convection in a semi-infinitely deep layer of fluid. Z. Angew. Math. Phys. 50: 1-14.

Hurle, D. T. J. 1981. Surface aspects of crystal growth from melt. Adv. In Colloid Interface Sci. 15: 101-130.

Mills, K. C. & Keene, B. J. 1990. Factor affecting variable weld penetration. Int. Material Rev. 35(4): 185-216.

Ostrach, S. 1988. Fluid mechanics in crystal growth melts. Crystal 11: 72-122.

Pearson, J. R. A. 1958. On convection cells induce by surface tension. J. Fluid Mech. 4: 489-500.

Regnier, V. C. & Lebon, G. 1995. Time growth on convection length of fluctuation in thermocapillary convection with surface deformation. Q. J. Mech. appl. Math. 48: 57-75.

Schwabe, D. 1988. Surface tension-driven flow in crystal growth melts. Crystal 11: 75-112.

Scriven, L. E. & Sternling, C. V. 1964. On cellular convection driven by surface tension gradients: Effect of mean surface tension and surface viscosity. J. Fluid Mech. 19: 321-340.

Smith, K. A. 1996. On convective instability induced by surface­ tension gradients. 1. Fluid Mech. 24: 401-414.

Takashima, M. 1981a. Surface tension driven instability in horizontal liquid layer with deformable free surface. 1. Stationary convection. J. Phys. Soc. Japan 50(8): 2745-2750.

Takashima, M. 1981b. Surface tension driven instability in horizontal liquid layer with deformable free surface. II. Overstability. J. Phys. Soc. Japan 50(8): 2751-2756.

Wilson, S. K. 1993a. The effect of a uniform magnetic field on the onset of Marangoni convection in a layer of conducting fluid. Q. J. Mech. Appl. Math. 46(2): 211-248.

Wilson, S. K. 1993b. The effect of a uniform magnetic field on the onset of steady Benard-Marangoni convection in a layer of conducting fluid. J. Eng. Math. 27: 161-188.

Wilson, S. K. & Thess, A. 1997. On the linear growth rates of the long-wave modes in Benard-Marangoni convection. Phys. Fluids 9(8): 2455-2457.

 

previous