| Sains Malaysiana 34( 1 ): 63-72 (2005)    Removal of Toxic Aliphatic Amines by Adsorption  using  Commercial Activated Charcoal (Penyingkiran  Amina Alifalik Teknik dengan Serapan  menggunakan  Arang Teraktif Komersial)     Y. Iqbal, N. Ahmad  Department of Chemistry University of Peshawar,  Peshawar, Pakistan   Ihsanullah Nuclear Institute for Food & Agriculture (NIFA) Tarnab, Peshawar, Pakistan   S.A. Khan Pakistan Council of  Scientific & Industrial Research (PCSIR) Labs., Peshawar, Pakistan   M.Saleem National Center of  Excellence in Physical Chemistry Univ. of Peshawar, Pakistan     ABSTRACT   The  present study was to investigate the use of granular activated charcoal (GAC) as a potential material for removal of  toxic aliphatic compounds by adsorption. Commercial granular charcoal was  degassed at 105°C, 300°C and 800°C for a period of twenty-four hours, which was  then used as an adsorbent for the adsorption of methylamine, dimethylamine and  trimethylamine from their aqueous solutions at 25°C. The time dependence  studies showed that four hours are the optimum time for the maximum adsorption  of the alkylamines, irrespective of their nature and concentrations (0.005M  & 0.01M). Adsorption was greater from higher concentration than lower  concentration of adsorbate solution. Lower adsorption of alkylamines was  observed when the charcoal was evacuated at high temperature. The adsorption  sequence of alkylamines followed the order dimethylamine > trimethylamine  > methylamine. The amount of adsorption using different adsorption isotherm,  i.e. Freundlich and Langmuir were evaluated. L-type isotherms were also  observed for the adsorption data. Further, the Langmuir and Freundlich isotherms  were found applicable to the adsorption data and the values of the adsorption  capacity i.e. "k" and monolayer adsorption capacity "b"  were calculated and in agreement with the adsorption patterns.    Keyword:  Activated carbon, Aliphatic Amine Absorption      ABSTRACT   Kajian  dilakukan untuk melihat kegunaan arang teraktif granul sebagai bahan berpotensi  untuk mengeluarkan sebatian alifatik toksik dengan jerapan. Arang granulat  komersial dinyahgas pada 105°C, 300°C dan 800°C untukj angka masa 24 jam dan  seterusnya digunakan sebagai penjerap bagi jerapan metilamina, dimetilamina dan  trietilamina dari larutan akueus pada 25°C. Kajian kebergantungan masa  menunjukkan bahawa masa optimum untuk jerapan maksimum alkil amina ialah 4 jam,  tidak kita bentuk dan kepekatan (0.005M &  0.01 M). Pencapaian jerapan adalah lebih tinggi pada kepekatan tinggi  dibandingkan dengan larutan jerap berkepekatan rendah. Jerapan rendah oleh  alkilamina diperhatikan apabila arang dinyahgas pada suhu tinggi. Susunan  jerapan alkilamina diperhatikan apabila arang dinyahgas pada suhu tinggi.  Susunan jerapan alkilamina mengikut tertib dimetilamina > trimetilamina >  metilamina. Amaun jerapan menggunakan isoterma jerapan berbeza, iaitu  Freundlich dan Langmuir telah dinilai Isoterma jenis juga diperhatikan untuk  data jerapan. Tambahan pula, isoterma Freundlich dan Langmuir didapati berguna  untuk data jerapan dan nilai kapasiti jerapan, iaitu 'k' dan kapasiti jerapan  lapisan mono dihitung dan didapati konsisten dengan corak jerapan.    Kata kunci: karbon teraktif, jerapan amina  alifatik      REFERENCES/RUJUKAN   Bodecker, C. 1895. J. Landw 7:  48.  Brunauer, S., Deming, L.S.,  Deming, W.E. & Teller, E. 1940. A  theory of the van der Waals adsorption of gases. Journal of the American  Chemical Society 62: 1723-32.  Buczek, B., Swiatkowski, A. & Goworek, J. 1955. Adsorption from  binary liquid mixtures on commercial activated carbon. Carbon 33(2):  129-34.  Chiang, Y., Chiang, P. & Chang, E-E. 1998. Evaluations of the  physicochemical characterizations of activated carbons. Journal of  Environmental Science and Health A33(7): 14371463.  Cooney, D.O., Nager, A. & Hines, A.L. 1983. Solvent regeneration  of activated carbon. Water Research 17(4): 403-10.  Dobbs., R.A. & Cohen, J.M. 1980. Carbon adsorption for toxic organic, EPA  600/8-80-023. Municipal Environ. Lab., Cincinnati, Ohio, USA, 45268.  Foly, G. 1986. Charcoal making in  developing countries. Tech. Report No. 5. 11th Edn. London.  Foster, D.S. 1967. Encyclopedia of  Industrial Chemical Analysis, vol. 5. New York: Inter Sci. Pub.  Freundlich, H. 1926. Colloid and  Capillary Chemistry, London: Hasseler, J.W. 1974. Activated carbon, New  York: Chemical Pub. Co.  Hussain, R. & Mohammad, D. 1993. Densities of iron and aluminium poly  methacrylate powders. Science International (Lahore) 5(3): 251.  Langmuir, I., 1918. The adsorption of  gases on plane surfaces of glass, mica and platinum. Journal of the American  Chemical Society 40: 1361-1402.  Lin, C.C, & Liu, H.S. 2000. Adsorption in a Centrifugal Field: Basic Dye  Adsorption by Activated Carbon. Industrial &  Engineering Chemistry Research 39(1): 161-167.  Little, M. & Hills, FJ. 1972. Agric. Extension. Davis, USA: Univ.  California.  Lupashku, T., Monahova, L. & Gonchar, Y. 1994. Adsorption  properties of active carbons obtained from food industry byproducts. Revuee  Roumaine de Chimie 39(8): 909-16.  McKay, G., Bino, M.J. & Altamemi, A.R. 1985. The adsorption of  various pollutants from aqueous solutions on to activated carbon. Water  Research 19(4): 491-5.  Othmer, K. 1963. Encyclopedia of  chemical Technology, 2nd Edn; vol. 2. New York: Tnter-Science  Pub.  Schmidt, J.L., Pimenov, A.Y.,  Lieberman, A.I. & Cheh, H.Y. 1997.  Kinetics of adsorption with granular, powdered and fibrous activated carbon. Separation  Science and Technology 32(13):2105-2114.  Tanju, K. Mehme, K. & James, E.K. 1999. Environ. Sci.  Technol. 33: 3217.  Thompson, J.K., Krebs, J.J. & Resing, H.A., 1965. N.M.R relaxation  times of benzene adsorbed on charcoal. Molecular rotation and diffusion. Journal  of Chemical Physics 43(11):3853-65.  Uranowski, L.J. Tessmer, C.H. & Vidic, RD. 1998. The effect of surface  metal oxides on activated carbon adsorption of phenolics. Water Research 32(6):  1841-1851.  Walter, G.C. & Robert, A.R 1973. Can. J. Chem. 51: 533.  Walter, RW. & Luthy, R.G. 1984. Environ. Sci. Technol., 18: 395.  Wiessner, A., Remmler, M., Kuschk, P. & Stottmeister, U. 1991 The treatment of  deposited lignite pyrolysis wastewater b adsorption using activated carbon and  activated coke. Colloia and Surfaces 139(1): 91-97.  Yousaf, I. Sultan, A. & Mohammad, I. 2000. J. Chem. Soc.  Pak. 22: 281.  Yu, J.J. & Chou S.Y. 2000. Contaminated site remedial investigation and  feasibility removal of chlorinated volatile organic compounds from groundwater  by activated carbon fiber adsorption. Chemosphere 41(3):371-8.         |