| Sains Malaysia 34(1): 81-85 (2005)   Penggunaan Jaringan Neural Tiruan bagi menentukan  Kekeruhan air berdasarkan Pencaman Corak Spektrum Pantulan (The use of Artificial Neural Network for  Determination of Water Turbidity based on Pattern Recognition of the Reflectance  Spectrum)     Mohd. Azwani Shah Mat Lazim, Musa Ahmad, Zuriati  Zakaria Pusal Pengajian Sains Kimia & Teknologi Makanan Fakulti Sains dan Teknologi Universiti Kebangsaan Malaysia 43600 UKM Bangi. Selangor. D.E.   Mohd. Nasir Taib Fakulti Kejuruteraan Elektrik Universiti Teknologi MARA  40450 Shah Alam. Selangor. D.E. Malaysia       ABSTRAK   Jaringan  neural tiruan (ANN) dengan lagoritma perambatan balik (BP) telah digunakan  dalam kajian ini untuk menentukan kekeruhan air. Tiga panjang gelombang yang  mewakili serapan bagi lapan sampel telah dipilih sebagai imput latihan. Hasil  kajian menunjukkan bagi  jaringan  terlatih dengan bilangan ulangan latihan 250,000 dan kadar pembelajaran 0.001  telah memberikan nilai SSE yang terendah iaitu 0.04. Dalam kajian ini jaringan  ANN didapati boleh menentu dan meramalkan nilai kekeruhan sample air  berdasarkan corak serapan pantulan. Arkitektur yang sesuai bagi kajian ini  adalah 3:25:1. Purata ralat ramalan adalah 0.02.   Kata kunci: Jaringan neural tiruan  algoritma perambatan balik, kekeruhan     ABSTRACT   Artificial  neural network (ANN) was used in this study to determine water turbidity by  using back propagation algorithm. Three wavelengths which represent reflectance  intensity for eight standard samples were used as training input. The finding  from the study shows that the trained network with number of epochs of 250,000  and learning rate of 0.001 gave the lowest sum of squared error (SSE) of 0.04.  ANN was able to predict the turbidity of water based on the pattern recognition  of the reflectance spectrum. The architecture of optimized ANN used in this  study was 3:25:1. The average prediction error was 0.02.   Keywords:  Artificial neural network, back propagation algorithm, turbidity     RUJUKAN/REFERENCES   Abdul Latif, A. Suzylawaty, I. &  Subash, B. 2003. Water recycling from palm oil mill effluent using membrane  technology. Desalination. 157: 87-95. Bos, M. Bos, A. & Van de Linden,  W.E. 1993. Data processing by neural networks in quatitative chemical analysis, Analyst, 118: 323-328. Despagne, F. & Massart, D.L. 1998.  Neural network in multivariate calibration. Analyst. 123: 157-163. Dickinson, E. 1992.  An Introduction to Food Colloids.  Oxford: Oxford University Press. Dickinson, E. 1994. Colloidal aspects  of beverages. Food Chemistry 51: 343-347. Faiz Bukhari M.S. Musa A., Mohd. Nasir T. (2003).  Oprimisation of the range of an optical fibre pH sensor using feed-forward ANN. Sensors Actuators B. 90: 175-181. Farinato, R.S. & Rowell. R.L. 1983. Optical  Properties of Emulsion. Encyclopedia of Emulsion. New York: Marcel Dekker.  Gasteiger. J & Zupan, 1.  1993. Neural networks in chemistry. Angew: Int. Ed. Eng. 32: 503-527.  March. J.G., Simonet. B.M. & Grases. F. 1999.  Determination of phytic acid by catalytic f1uorimetric. Analyst. 124:  897-900.  Mashudi, M.R. 2001. Forecasting water demand using  back propagation networks in the operation of reservoirs in the Citarum  Cascade, West Java, Indonesia. ASEAN Journal on Science and Tech. for  Development. 18(2): 71-82.  Taib.M.N & Narayanaswamy. R. 1996. Multichannel  calibration technique for optical fibre chemical sensor using ANN. Sens.  Actuators. B. 365: 38-39:  Taib.M. N. & Nrayanaswamy. R. 1997. Multichannel  calibration technique for optical fibre chemical sensor using artificial neural  network Sens. Actuators. B. 38-39: 365.  Wasserman, P.D. 1989.  Neural Computing: Theory and Practise. New  York: Van Nostrand Reinhold.        |