| Sains  Malaysiana 34(1): 93-99 (2005)    Sistem Kebal Buatan untuk Pengecaman Digit (Artificial Immune System for Digit Recognization)     Siti Maryam Shamsuddin, Anazida Zainal & Shahliza  Abdul Halim Fakulti Sains Komputer & Sistem  Maklumat  Universiti Teknologi Malaysia 81310 Skudai, Johor, D.T.     ABSTRAK   Sistem  Kebal Buatan (SKB) adalah satu bidang biologi yang telah membuka lembaran baru  kepada penyelidik sains komputer untuk menggabungkan konsep kebal buatan di  dalam penyelidikan yang berkaitan seperti pencerobohan sistem keselamatan. SKB  tabi'i adalah suatu sistem pembelajaran adaptif iaitu yang mempunyai ciri  selari dan mekanisma pelengkap bagi pertahanan terhadap unsur asing atau  bakteria yang memasuki tubuh badan manusia. SKB bertindak secara tak linear dan  menggarap konsep biologi seperti pengelasan terhadap sel kendiri dan sel tak  kendiri. Rencana ini memperihalkan pelaksanaan kaedah SKB menggunakan  pendekatan pilihan negatif bagi proses pengelasan dan pengecaman corak terhadap  digit sifar hingga digit sembilan. Data bagi setiap digit tersebut disari  menggunakan kaedah momen tak ubah dan diwakili sebagai rentetan 8 bit. Setiap kelompok digit dikelaskan  sebagai kendiri bagi menghasilkan data tak kendiri atau pengesan. Ini bermakna  terdapat 10 kelas pengesan yang dijana, dan proses padanan antara data kendiri  dan tak kendiri dilaksanakan menggunakan operasi XOR. Penjanaan keputusan bagi  pengelasan untuk suatu digit dihitung berasaskan kepada nilai peratusan yang  terhasil, iaitu nilai yang dijana merupakan nilai yang digunakan bagi mengecam  digit yang wujud pada data ujian. Semakin besar nilai peratusan yang  diperolehi, maka semakin hampir nilai tersebut kepada digit yang hendak dicam.    Kata  kunci: Sistem Kebal Buatan; Pengecaman Digit      ABSTRACT   Artificial  Immune System (AIS) is an emerging field to the computer scientists and most of  the recent works concerning AIS is in the area of Intrusion Detection System  (IDS). AIS is based on human immune system. It is distributed in nature,  deploys the adaptive learning and exercises complementary mechanism to defend  human body from bacteria or foreign elements. Artificial Immune system is  non-linear and adopts the biological concept in classifying self against the  non-self cells. This paper discusses on the implementation of AIS using the  Negative Selection Algorithm in classifying and recognizing patterns on digits  (0 to 9). Data for every digit is extracted using moment invariants and is  represented in 8 bit string. There are 10 sets of detectors generated and the  complementary process between self and non-self is done using the XOR operator.  The result for classification for a digit is based on the percentage matched.  Higher percentage indicates that the test data is closed to the digit to be  recognized.    Keywords:  Artificial Immune System; Digit recognization      RUJUKAN/REFERENCES   Alexander, T. & Dasgupta, D. 2000.  A formal model of an artificial immune system. Biosystems 55: 151-158. Anchor, K.P. Williams, P.D. Gunsch,  G.H. & Lamont,, G.B. 2002.  The  computer defense immune system: current and future research in intrusion  detection. Proceeding of the 2002 Congress on Evolutionary Computation. Honolulu, HI, USA: 1027-1032. Bellili, A. gilloux, M. &  Gallinari, P. 2003. An MLP-SVM combination architucture for offline handwritten  digit recognition. International Journal on Document Analysis and  Recognition 5: 244-252. Cheng-Lin, L. Nakashima, K., Sako, H.  & Fujisawa, H. 2003.  Handwritten digit  recognition: benchmarking og state-of-the-art techniques.  Pattern Recognition : The Journal of the  pattern Recognition Society 36:   2271-2285. De Castro, L.N. & Timmis, J.I.  2003. Artificial immune system as a novel soft computing paradigm.  Soft Computing Journal 7: 526-544. Dipankar, D. & Nino, F. 2000.  A Comparison of Negative and Positive  Selection Algorithms in Novel Pattern Detection. Proceedings of the IIEE  International Conference on Systems, Man and Cybernetics (SMC), Nashville,  October 8-11. Duncan, R., De Castro, L.N. & Ayara, M. 2002. Negative Selection:  How to Generate Detector. Proceeding of 1st International  Conference on Artificial Immune System, University of Kent, Canterbury:  89-98.  Hu, M.K.1962. Visual Pattern  Recognition by Moment Invariant. IRE Trans. Inform. Theory, IT-8 :  179-187.  Hunt, J. & Denise E. 1996. Learning Using An Artificial Immune System. Journal  of Network and Computer Application 19:189-212.  Jerome, H.C. 2000. The Immune System As  A Model For Pattern Recognition and Classification. Journal of American  Medical Information Association 7(1): 28 - 41.  Kim, J. & Bentley, P.J. 2002. Towards an artificial immune system for  network intrusion detection: an investigation of dynamic clonal selection. Proceeding  of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA:  1015-1020.  Leedham, C.G. 1994. Historical  Perspectives of Handwriting Recognition systems. IEEE Colloquimon on  Handwriting and Pen-Based Inputs 1: 1-3.  Maslina Darus & Siti Mariyam Shamsuddin. 2001. Mencungkil Kesiratan Momen  Geometri Takubah Terhadap Pengkelasan Fitur. Jurnal Teknologi Maklumat 13(2):  1-15.  Satyanath, S. & Sain, F. 2001. An AlS Approach to a Color Image  Classification Problem in a Real Time Industrial Application. Proceeding of  IEEE International Conference on Systems, Man, and Cybernetics, Tucson, AZ,  USA, 2285-2290.  Steven A. & Stephanie, F. 1999. Immunity by Design: An Artificial Immune  System. Proceeding of the Genetics and Evolutionary Computing Conference  (CECCO), San Francisco, CA, 1289-1296.  Xiao, R.B., Wan, L. & Liu, Yong. 2002. A Framework of AIS  Based Pattern Classification and Matching For Engineering Creative Design. Proceeding  of the 1st International Conference on Machine Learning and  Cybernatics, Beijing, 4-5 September, 1554-1558.        |