Sains Ma1aysiana 35(1): 67-73 (2006)
Long Memory and Asymmetric Volatility Behaviour of the Malaysian
Stock Market: A Statistical Modelling Approach
(Tabiat Kemeruapan Ingatan Berpanjangan dan Asimetrik Pasaran Saham Malaysia:
Satu Pendekatan Permodalan Berstatistik)
Abu Hassan Shaari Mohd Nor & Chin Wen Cheong
Pusat Pengajian Ekonomi
Fakulti Ekonomi dan Perniagaan
Universiti Kebangsaan Malaysia
43000 UKM Bangi, Selangor D.E. Malaysia
ABSTRAK
Kajian terhadap kesan kebergantungan kemeruapan ingatan berpanjangan (long memory) dan asimetrik bagi harga indeks komposit harian di Bursa Malaysia telah dilakukan menggunakan model keluarga GARCH. Model keluarga GARCH digunakan dengan andaian siri kejutan (innovation series) bertaburan Gaussian, student-t dan student-t pencong (skewed student-t). Kesan kebergantungan ingatan berpanjangan pula dikaji menggunakan parameter Hurst. Model GARCH terintegrasi separa (fractionally integrated) dipadankan untuk melihat kesan kemeruapan ingatan berpanjangan dan asimetrik. Keputusan kajian menunjukkan bahawa model GARCH ingatan berpanjangan dan asimetrik dengan siri kejutan bertaburan student-t pencong mempunyai keupayaan peramalan kemeruapan pulangan indeks komposit yang lebih baik berbanding model yang lain.
Kata kunci: Kemeruapan, keserupaan sendiri, ingatan berpanjangan, kesan keumpilan terintegrasi separa
ABSTRACT
This paper analyzes the asymmetric long memory volatility dependency of the interday prices of Composite Index (CI) at Bursa Malaysia by using GARCH family models. The GARCH type models are used with the assumption that the innovations series follow either one of the following distributions: Gaussian, Student -t and skewed Student -t. The stock returns' long memory dependency is determined using the Hurst parameter. The long memory and asymmetric volatility are modelled by fractionally integrated GARCH models. It is found that the asymmetric and long memory GARCH models with skewed student-t distribution give better predictive ability on the volatility of the Kuala Lumpur Composite Index (KLCI).
Keywords: volatility, self-similar, long memory, leverage effect, fractional integration
RUJUKAN/REFERENCES
Andersen T.G. & Bollerslev T. 1997. Heterogeneous information arrivals and return volatility dynamics: Uncovering the long run in high frequency data. Journal of Finance 52: 975-1005.
Andersen T.G. Bollerslev. T & Jim Cai. 2000. Intraday and interday volatility in the Japanese stock market. Journal of Int. Financial Markets, Institutions and Money 10: 107-130.
Bachelier, L. 1964. Theory of Speculation. In Cootner, P.(ed), The Random Character of Stock Market Prices, Cambridge, MA: Massachusetts Institute of Technology Press.
Baillie R. T. 1996. Long Memory Processes and Fractional Integration in Econometrics. Journal of Econometrics 73: 5-59.
Baillie, R. T., T. Bollerslev, & H.O. Mikkelsen. 1996. Fractionally integrated autoregressive conditional heteroscedasticity, Journal of Econometrics 74: 3-30.
Beran J. 1994. Statistics for long-memory processes. London UK: Chapman & Hall.
Cowles, A. 1944. Stock Market Forecasting. Econometrica 1: 309-324.
Dacorogna M.M., Muller U.A., Nagler R.I., Olsen RB. & Pictet O.V., 1993. A geographical model for the daily and weekly seasonal volatility in the FX market. Journal of International Money and Finance 12(4): 413-438.
Ding Z. & Granger R C. W. J. 1993. Varieties of Long Memory Models, Journal of Econometrics 73: 61-77.
Ding, Z., C. W. J. Granger & R.F. Engle 1993. A long memory property of stock market returns and a new model. Journal of Empirical Finance 1: 83-106.
Engle, R.F. 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4): 987-1007.
Fama, E. 1965. The Behaviour of Stock Market Price. Journal of Business 38: 34-105.
Fama, E. 1970. Efficient Capital Markets: A Review of Theory and Empirical Work. Journal of Finance 25: 383-417.
Glosten, L. & R Jagannathan & D. Runkle. 1993. On the relation between the expected value and the volatility of the normanal excess return on stocks. Journal of Finance 48: 1779-1801.
Hurst H.E .. 1951. Long term storage capacity of reservoirs, Transaction of the American Society of Civil Engineers 116: 770-799.
John. M. M. 2002. Can GARCH Models Capture the Long-Range Dependence in Financial Market Volatility? Working paper, University of Toronto, Canada.
Lambert, P. & Laurent, S. 2001. Modelling financial time series using GARCH-type models and a skewed student density. Working paper, University de Liege.
Lux T. & M. Marchesi. 1999. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397: 498-500.
MacDonald R & I.W. Marsch. 1996. Currency Forecasters are Heterogeneous: Confirmation and Consequences. Journal of International Money and Finance 15: 665-685.
Mandelbrot, B. 1983. The Fractal Geometry of Nature. New York: Freeman.
Michel D., Ulrich M., Richard O. & Oliveier P. 2001. Defining efficiency in heterogeneous markets. Quantitative Finance 1(2): 198-201.
Mullier, U., Dacorogna, M., Dav R, Pictet 0, Olsen R & Ward, J. 1993. Fractals and intrinsic time - a challenge to econometricians. 39th International AEA Conference on Real Time Econometrics: 14-15.
Nicolas Boitout & Loredana Ureche-Rangau. 2001. Stochastic Volatility modelling in heterogeneous markets. Proceeding of 18th AFFI International Conference in Finance, Namur, Belgium.
Pagan, A. & Schwert, G. 1990. Alternative models for conditional stock volatility". Journal of Econometrics 52: 245-265.
Peters E. E. 1994. Fractal Market Analysis. A Wiley Finance Edition, New York: John Wiley & Sons.
Rabemananjara, R & Zakoian J.M. 1993. Threshold ARCH models and asymmetries in volatility. Journal of Applied Econometrics 8: 31-49.
Samuelson, P. 1965. Proof that Properly Anticipated Prices Fluctuate Randomly. Industrial Management Review 6: 41-49.
Shiller R. J. 2000. Irrational Exuberance. Princeton, NJ: Princeton University Press.
Tsay R.S. 2002. Analysis of Financial Time Series. Canada: Wiley series in Probability and Statistics.
Tse, Y. 1998. The Conditional heteroscedasticity of the Yen-Dollar Exchange Rate. Journal of Applied Econometrics 193: 49-55.
|