Sains Malaysiana 36(1): 33-38 (2007)
Potensi Reagen Fenilfluoron sebagai Penunjuk Ph
untuk Pembangunan Sensor Optik pH
(Potential of Phenylfluorone as pH Indicator for an Optical pH Sensor Development)
Rosmawani Mohammad, Musa Ahmad & Jamaluddin Mohd Daud
Pusat Pengajian Sains Kimia & Teknologi Makanan
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor DE. Malaysia
ABSTRAK
Potensi larutan reagen fenilfluoron untuk digunakan sebagai bahan reagen bagi pembangunan sensor optik pH dibincangkan dalam kajian ini. Reagen ini dipilih kerana ia belum pernah dilaporkan sebelum ini untuk digunakan sebagai bahan reagen bagi pembangunan sensor optik pH. Berdasarkan kajian larutan yang telah dijalankan, julat rangsangan linear pH bagi reagen fenilfluoron ialah antara pH 4–11. Perubahan warna dapat diperhatikan, iaitu warna kuning dalam asid kuat, warna oren dalam asid lemah serta bes lemah dan warna ungu dalam bes kuat. Perubahan warna yang berlaku adalah lebih kurang 5 saat. Reagen fenilfluoron mempunyai kestabilan foto yang baik dengan nilai RSD 0.33% untuk tempoh kajian selama 95 hari. Nilai RSD bagi kebolehulangan pada pH 2, pH 7 dan pH 12 adalah masing-masingnya sebanyak 2.6%, 0.9% dan 1.4%. Pemerhatian ini menunjukkan fenilfluoron mempunyai potensi yang baik untuk digunakan sebagai bahan reagen bagi pembangunan sensor optik pH.
Kata kunci: Fenilfluoron; penunjuk pH; sensor optik pH
ABSTRACT
The potential of phenylfluorone reagent solution for the development of optical pH sensor was discussed in this study. Phenylfluorone has been chosen because it has never been reported before for use in the development of optical pH sensor. Results from the study showed that a linear pH range for this reagent was pH 4–11. The colour changes were to yellow in strong acid, orange in both weak acid and weak base and purple in strong base. The colour change was within 5 seconds. Phenylfluorone has a good photostability with RSD value 4.2% for a study period of 95 days. The RSD values of the reproducibility study were found to be 2.6%, 0.9% and 1.4% for pH 2, pH 7 and pH 12, respectively. These observations indicate that phenylfluorone has a good potential for used as a sensing reagent for development of optical pH sensor.
Keywords: Phenylfluorone; pH indicator; optical pH sensor
RUJUKAN/REFERENCES
Afsaneh Safavi & Mozhgan Bagheri. 2003. Novel optical pH sensor for high and low pH values. Sensors and Actuators B 90: 143-150.
Butler, T.M., MacCraith, B.D., McDonagh, C. 1998. Leaching in sol-gel-derived silica films for optical pH sensing. Journal of Non-Crystalline Solids 224: 249-258.
Cajlakovic, M., Lobnik, A. & Werner, T. 2002. Stability of new optical pH sensing material based on cross-linked poly(vinyl alcohol) copolymer. Analytical Chimica Acta 455: 207-213.
Callan, J.F., de Silva, P., Ferguson, J., Huxley, A.J.M. & O’Brien, A.M. 2004. Fluorescent photoionic devices with two receptors and two switching mechanisms: applications to pH sensors and implications for metal ion detection. Tetrahedron 60: 11125-11131.
Cemal, H., Kadriye, E., Berrin, Y. & Engin, C. 2004. Optical pH sensor based on spectral response of newly synthesized schiff bases. Dyes and pigments 62(1): 35-41.
Ensafi, A.A. & Kazemzadeh, A. 1999. Optical pH sensor based on chemical modification of polymer film. Microchemical Journal 63: 381-388.
Faiz Bukhari Mohd Suah, Musa Ahmad & Mohd Nasir Taib. 2003a. Kemajuan dan penggunaan penderia pH berasaskan gentian optik: Satu Ulasan Khusus Masakini, Sains Malaysiana 33: 183-207.
Faiz Bukhari Mohd Suah, Musa Ahmad & Mohd Nasir Taib. 2003b. Optimisation of the range of an optical fibre pH sensor using feed-forward artificial neural network. Sensors and Actuators B: Chemical B90(1-3): 175-181.
Faiz Bukhari Mohd Suah, Musa Ahmad & Mohd Nasir Taib. 2003c. Applications of artificial neural network on signal processing of optical fibre pH sensor based on bromophenol blue doped with sol-gel film. Sensors and Actuators B: Chemical B90(1-3): 182-188.
Griffiths, J. & Mama, J. 2000. pH-dependent absorption and fluorescence spectra of hyroxyaryl-squarylium dyes. Dyes and Pigments 44: 9-17.
Handbook of Chemistry & Physics. 1999-2000. Ed. Ke 80. Amerika Syarikat:CRC Press.
Jie Lin & Dong Liu. 2000. An optical pH sensor with a linear response over a broad range. Analytical Chimica Acta 408: 49-55.
Li, Y.M., Huai, Y.W., Hui, X. & Li, X.X. 2004. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor. Spectrochimica Acta Part A 60: 1865-1872.
Li, Z., Pan, J. & Ou, Z. 2003. New development of the derivatives fluorone as chromogenic reagent in analytical chemistry. Reviews in Analytical Chemistry 22(2): 257-290.
Lu, S.W. & Bradley, M. 2005. Immobilisation and assessment of aniline dyes for non-fluorescent pH sensing applications. Tetrahedron Letters 46: 5731-5734.
Makedonski, P., Brandes, M., Grahn, W., Kowalsky, W., Wichern, J., Wiese, S. & Hans-Hermann, J. 2004. Dyes and Pigments 61: 109-119.
Makote, R. & Collinson, M.M. 1999. Organically modified silicate films for stable pH sensors. Analytical Chimica Acta 394: 195-200.
Malins, C., Glever, H.G., Keyes, T.E., Vos, J.G., Dressick, W.J. & MacCraith, B.D. 2000. Sol-gel immobilised ruthenium(II) polypyridyl complexes as chemical transducers for optical pH sensing. Sensors and Actuators B 67: 89-95.
Musa Ahmad & Chai, E.U. 2001. Pendopan filem sol-gel dengan kompleks Al-ECR: potensi sebagai bahan penderia untuk pengesanan fluorida. Journal of Physical Science 12: 117-127.
Safavi, A. & Abdollahi, H. 1998. Optical sensor for high pH values. Analytical Chimica Acta 367: 167-173.
Taib, M.N., Andres, R., Narayanaswamy, R. 1996. Extending the response range of an optical fibre pH sensor using an artificial neural network. Analytical Chimica Acta 330: 31-40.
Villegas, M.A. & Pascual, L. 1999. Sol-gel silica coatings doped with a pH-sensitive chromophore. Thin Solid Films 351: 103-108.
Wolfbeis, O.S. 2002. Fiber-optic chemical sensors and biosensors. Anal. Chem. 74: 2663-2677.
Zhe, J., Yongxuan S. & Yixiang D. 2000. An improved optical pH sensor based on polyaniline. Sensors and Actuators B 71: 118-122.
Zhihong, L., Faliang, L. & Tianlu, C. 2004. Polymeric pH indicators immobilized PVA membranes for optical sensors of high basicity based on a kinetic process. Analytica Chimica Acta. 519: 147-153.
Zhihong L., Junfeng L. & Tianlu C. 2005. Phenol red immobilized PVA membrane for an optical pH sensor with two determination ranges and long-term stability. Sensors and Actuators B. 107: 311-316.
|