Sains Malaysiana 36(2): 123-132 (2007)

Pengambilan Fe, Mn dan Cu oleh Nepenthes sp.

dalam Tanih Bekas Lombong Pelepah Kanan Kota Tinggi, Johor

(Uptake of Fe, Mn and Cu by Nepenthes sp. in  Ex-Mining Soil at

Pelepah Kanan Kota Tinggi, Johor)

 

 

Sahibin Abd. Rahim, Tukimat Lihan, Zulfahmi Ali Rahman, Wan Mohd. Razi Idris,

Azman Hashim, Sharilnizam M. Yusof & Liow Hai Yin

Pusat Pengajian Sains Sekitaran dan Sumber Alam

Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

Diserahkan: 5 Januari 2007 / Diterima: 6 Februari 2007

 

 

ABSTRAK

Kandungan logam berat Fe, Cu dan Mn dalam tanih serta tumbuhan Nepenthes sp yang diambil daripada kawasan bekas lombong bijih timah dan besi di Lombong Pelepah Kanan, Kota Tinggi, Johor telah dikaji. Kandungan logam berat telah ditentukan di dalam empat bahagian tumbuhan Nepenthes sp. iaitu di dalam akar, batang, daun dan periuk.  Sebanyak 15 sampel tumbuhan Nepenthes sp dan tanih dikumpul untuk dianalisis. Komposisi logam-logam berat dalam sampel tanih diekstrak dengan menggunakan campuran asid nitrik dan asid perklorik. Kandungan logam berat dalam tumbuhan pula diekstrak melalui kaedah penghadaman basah. Kandungan logam berat di dalam larutan ekstrak tanih dan tumbuhan ditentukan dengan menggunakan alat Spektrofotometer Serapan Atom Kaedah Nyalaan (FAAS). Nilai Koefisien Penyerapan Biologi (BAC) dikira sebagai nisbah kandungan logam berat dalam tumbuhan kepada kandungan logam berat dalam tanih. Analisis tanih menunjukkan kawasan bekas lombong didominasi oleh pasir dan bersifat asid. Ia juga mempunyai kandungan bahan organik dan nilai kekonduksian elektrik yang rendah. Logam Fe mencatatkan kepekatan purata paling tinggi di dalam tanih diikuti oleh Mn dan Cu. Tumbuhan Nepenthes sp boleh dijadikan sebagai pengumpul biologi untuk logam Fe kerana nilai BACnya adalah tinggi.

 

Kata kunci: Nephentes sp.; Biological Accumulation Coefficient (BAC); tanih bekas lombong; pengayaan

 

ABSTRACT

Heavy metals ontent of Fe, Mn and Cu in soil and Nephentes sp. in a former iron and tin mining land at Lombong Pelepah Kanan, Kota Tinggi, Johor were determined. Heavy metal content were determined in four plant component namely roots, stems, leaves and pots. A number of 15 Nepenthes sp. plants and their corresponding substrate samples were collected for analysis. The composition of heavy metals in soil were extracted using mixture of nitric acid and perchloric acid. Heavy metals content in plants sample were extracted by wet digestion method. Heavy metal content in solution extract of soil and plant component were determined with Flame Atomic Absorption Spectrophotometer (FAAS). The BAC  (Biological Absorption Coefficient) was calculated as ratio of the heavy metal concentration in plant to that of its substrate. The analyses of soil showed that the former mining area was dominated by sand and acidic. It also has a low contents of organic matter and low reading of soil electrical conductivity. The soil contain higher concentration of Fe followed by Mn and Cu. Based on BAC value Nepenthes sp can be used as a bio-indicator for Fe.

 

Keywords: Nephenthes sp.; Biological Accumulation Coefficient (BAC); ex-mine land; enrichment

 

 

REFERENCES/RUJUKAN

 

Abdulla, H. H. 1966. A study of the development of podzol profiles in Dovey forest. Tesis Ph.D Aberystwyth: University of Wales.

Alvarez-Tinaut, M. C., Leal, A. & Recalde-Martinez, L.R. 1980. Iron-manganese interaction and its relation to boron levels in tomato plants. Plant and Soil 55: 377-388.

Archer, F. C. & Hodgson, I. H. 1987. Total and extracatable trace element content of soils in England and Wales. Journal of Soil Science 38: 421-432.

Avery, B. W. & Bascomb, C.L. 1982. Soil Survey Laboratory Methods. Soil Survey Technical Monograph No. 6. Harpenden.

AOAC. 1984. Official Method of Analysis 14th Edn. William, S. (Ed.). Association of Official Chemist, Virginia.

Bodek, I., Lyman, W. J., Reehl, W. F. & Rosenblatt, D. H. (eds.) 1988.  Environmental Inorganic Chemistry. Properties, Processes, and Estimation Methods. Pergamon Press, Oxford.

Bussler, W. 1979. Microscopical possibilities for the diagnosis of trace element stress in plants, paper presented at Int. Symposium Trace Element Stress in Plants. Los Angeles, November 6, 67.

Caldwell, T. H. 1971. Copper deficiency in crops, in Trace Elements in Soils and Crops. Min. Ag. Fish. Fd. Tech. Bull., 21: 62-87, HMSO, London.

Chaney, R.L., Brown, J.C. & Tiffin, L.O. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiology, 50: 208-213.

Chaudhry, F. M. & Loneragan, J. F. 1970. Effects of nitrogen, copper, zinc nutrition on wheat plants. Aust. J. of Agric. Res. 21: 865-79.

Chiras, D. D. (2001). Environmental science: creating a sustainable future. 6th edn. P. cm. Jones and Bartlett Publishers, Inc. United States.

Isermann, K. 1977. A method to reduce contamination and uptake of lead by plants from car exhaust gases, Environ. Pollut.. 12: 199-203.

Jones, J.B. 1972. Plant tissue analysis for micronutrients, in Micronutrients in Agriculture, Mortvedt, J.J., Giordano, P.M., and Lindsay, W.L. (Eds.). Soil Science Society of America, Madison, Wis., USA. p 319-347.

Kabata-Pendias, A & Pendias, H. 2001. Trace elements in soils & plants, USA: CRC Press.

Loneragan, J. F. 1981. Distribution and movement of copper in plants. In Copper in Soils and Plants. Loneragan, J.F., Robson, A.D. & Graham, R.D., (eds.). Academic Press, Sydney. p 165-188.

McKenzie, R. M. 1977. Manganese oxides and hydroxides, in Minerals in Soil Environment, Dixon, J. B. and Weed, S. B., Eds., Soil Science Society of America, Madison, Wis., USA. p 181-193.

McKenzie, R. M. 1980. The absorption of lead and other heavy metals on oxides of manganese and iron. Aust. J. Soil. Res. 18: 61-73.

Massey, D. M & Windsor, G. W. 1967. Rep.glasshouse crops res.Inst.,P.72.

Metson, A.J. 1956. Method of Chemical Analysis for Soil Survey samples. N.Z.D.S.I.R. Soil Bureau Bulletin no. 12.

Mengel, K. & Kirkby, E. A.1978. Copper. In Principles of Plant Nutrition. International Potash Institute, Wurblanfen-Bern. 16: 463-74.

Nriagu, J. O. 1984. Changing metal cycles and human health. Springer, Berlin Heidelberg New York.

Raghu, V. 2001. Accumulation of elements in plants and soils in and around Mangampeta and Vemula barite mining areas, Cuddapah District, Andhra Pradesh, India. Environmental Geology Journal 40:1265-1277.

Shamsuddin, J. 1990. Sifat dan Pengurusan tanih di Malaysia. Kuala Lumpur: DBP.

Scheffer, K., Stach, W. & Vardakis, F., 1979.  ϋber die Verteilung der Schwermatallen Eisen. Mangan, Kupfer and Zink in Sommergesternflanzen, Lanwirtsch. Forsch., 1, 156, 1978: 23-26.

Stevenson, F.J. & Ardakani, M.S. 1972. Organic matter reactions involving micronutrients in soils, in Micronutrients in Agriculture. Mortvedt, J.J., Giordano, P.M., and Lindsay, W.L. (Eds.). Soil Science Society of America, Madison, Wis., USA. 79-113.

Streit, B. & Stumm, W. 1993. Chemical Properties of  Metals and the Process of Bioaccumulation in Terrestrial Plants. In Plants as Biomonitors, VCH Publishers Inc., New York.

Tiffin, L. O., 1972. Translocation of micronutrients in plants, in Micronutrients in Agriculture, Mortvedt, J. J., Giordano, P. M., and Lindsay, W. L., Eds., Soil Science Society of America, Madison, Wis., USA. 199-224.

Van Dijk, H. 1971. Cation binding of humic acids. Geoderma 5: 53-67.

Van Goor, B.J. 1974.  Distribution of mineral nutrients in the plant in relation to physiological disorder, paper presented at the 19th Int. Horticultural Congr., Warsaw, September 11, 217.

 

 

previous