Sains Malaysiana 37(2):  131-135(2008)

 

Surface Analysis of Marine Sulphate-Reducing Bacteria

Exopolymers on Steel During Biocorrosion Using X-ray

Photoelectron Spectroscopy

(Analisis Permukaan Eksopolimer Bakteria Penurun-Sulfat Marin pada Keluli

Semasa Kakisan Bio Menggunakan Spektroskopi Fotoelektron Sinar-X)

 

 

Fathul Karim Sahrani

Pusat Pengajian Sains Sekitaran dan Sumber Alam

Fakulti Sains dan Teknologi 43600 UKM Bangi,

Selangor Darul Ehsan, Malaysia

 

Madzlan Abd. Aziz, Zaharah Ibrahim & Adibah Yahya

Jabatan Kimia / Biologi, Fakulti Sains, 81310 UTM Skudai,

 Johor Darul Takzim, Malaysia

 

 

Received:  25 July 2007 / Accepted:  25 September 2007

 

 

 

ABSTRAK

 

Tujuan kajian ini adalah untuk menentukan keadaan kimia permukaan semasa proses kakisan bio terhadap pertumbuhan dan penghasilan bahan eksopolimer (EPS) dalam campuran pengkulturan bakteria penurun sulfat marin yang dipencilkan daripada Kejuruteraan Berat dan Marin Malaysia Sdn. Bhd. (MHHE), Pasir Gudang. EPS dan mendakan pada permukaan keluli dianalisis menggunakan spektroskopi fotoelektron sinar-x (XPS). Analisis menggunakan XPS menunjukkan spektrum  Fe(2p3/2) untuk besi sulfida boleh dipadankan kepada komponen Fe(II) dan Fe(III), sepadan kepada jenis ikatan Fe-S. Ketiadaan oksigen oksida dalam spektrum O(1s) dan jenis ikatan Fe(III)-O dalam spektrum Fe(2p3/2) menyokong kesimpulan bahawa besi sulfida mengandungi kedua-dua besi ferik dan ferus serupa dengan monosulfida dan disulfida.

 

Kata kunci: bakteria penurun-sulfat; kakisan bio; bahan eksopolimer; spektroskopi fotoelektron sinar-x.

 

 

ABSTRACT

 

The aim of this study was to determine the surface chemistry during biocorrosion process on growth and on the production of exopolymeric substances (EPS) in batch cultures of mix-strains of marine sulphate-reducing bacteria (SRB) isolated from Malaysian Shipyard and Engineering Harbours, Pasir Gudang. The EPS and precipitates were analyzed by x-ray photoelectron spectroscopy (XPS).  The XPS results indicate that Fe(2p3/2) spectrum for iron sulphide can be fitted with Fe(II) and Fe(III) components, both corresponding to Fe-S bond types. The absence of oxide oxygen in the O(1s) spectrum and Fe(III)-O bond types in the Fe(2p3/2) spectrum supports the conclusion that iron sulphides are composed of both ferric and ferrous iron coordinated with monosulphide and disulphide.

 

Keywords: sulphate-reducing bacteria; biocorrosion; exopolymeric substances; x-ray photoelectron spectroscopy.

 

 

RUJUKAN/REFERENCES

 

Baty, A.M., Suci, P.A. Tyler, B.J. & Geesey, G.G. 1996. Investigation of mussel adhesin protein adsorption on polystyrene and poly(octadecyl methacrylate) using angle dependent XPS, ATR-FTIR AFM,  J. Colloid Interface Sci. 177: 307-315.

Beech, I.B. & Cheung, C.W.S. 1995. Interactions of exopolimers produced by sulphate-reducing bacteria with metal ions. Int. Biodet. Biodeg. 35: 59-72.

Beech, I.B. & Gaylarde, C.C. 1991. Microbial polysaccharides and corrosion. Int. Biodet. 27: 95-107.

Beech, I.B., Zinkevich, V., Tapper, R., Gubner, R. & Avei, R. 1999. Study of the interaction of sulphate-reducing bacteria exopolimers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionization mass spectrometry. J. Microbiol. Methods. 36: 3-10.

Briggs, D. 1997. Surface Analsis of Polymers by XPS and Static SIMS, Cambridge University Press.

Briggs, D. & Seah, M.P. 1990. Auger and X-ray Photoelectron Spectroscopy, in Practical Surface Analysis. Chichester, England. John Wiley & Sons Inc.

Cheung, C.W.S., Wals, F.C. Chun, V., Campbell, S.A. & Beech, J.B. 1994. The role of microbial consortia in marine corrosion of carbon steel. Int. Biodet. Biodeg. 34 (3-4): 259-279.

Clark, D.T. & Thomas, H.R. 1978. Applications if ESCA to polymer chemistry, XVII, Systematic investigation of the core levels of simple homo-polymers inpure oxygen and helium-oxygen mixtures. J. Polym. Sci. Polym. Chem. Eds. 17: 967-976.

Duan, J., Hou, B. & Yu, Z. 2005. Characteristics of sulfide corrosion products on 316L stainless steel surfaces in the presence of sulfate-reducing bacteria. Material Science and Engineering. 26: 624-629.

Ferris, F.G., Tazaki, K. & Fyfe, W.S. 1989. Iron oxides in acid mine drainage environments and their association with bacteria. Chem. Geol. 74: 321-330.

Ford, T.E., Maki, J.S. & Mitchell, R. 1988. Involvement of bacterial exopolymers in biodeterioration of metals. In : Houghton, D.R., Smith, R.N., Eggins, H.O.W. (eds.) Biodeterioration 7, Proceedings of the Seventh International Biodeterioration Symposium. Barking Essex, U.K. Elsevier Applied Science. 378-384.

Gaylarde, C.C. & Videla, H.A. 1995. Bioextraction and Biodeterioration of Metals. Cambridge: Cambridge University Press.

Geesey, G.G. & Jang, L. 1985. Extracellular polymers for metal binding. In: Microb. Mineral Recovery, McGraw-Hill, 223-247.

Geesey, G.G., Gillis, R.J., Avci, R., Daly, D., Hamilton, M, Shope, P. & Harhin, G. 1996. The influenced of exopolymer of SRB in steel corrosion. Corros. Sci. 38: 73-94.

Gubner, R. & Beech, I.B. 1996. Field and laboratory studies of marine biocorrosion of carbon steel. Proceedings of tne 2nd NACE Latin American Congress on Corrosion, 9-13 September 1996, Rio de Janeiro, Brazil. NACE International Electronic Publication, Paper LA 9: 61-75.

Hamilton, W.A. 1985. Sulfate-reducing bacteria and anaerobic corrosion. Ann. Rev. Microbiol. 39:195-217.

Harvey, D.T. & Linton, R.W. 1981. Chemical characterization of hydrous ferric oxides by x-ray photoelectron spectroscopy. Anal. Chem. 53: 1648-1688

Herbert, R.B., Benner, S.G., Pratt, A.R. & Blowes, D.W. 1998. Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria. Chemical Geology. 144: 87-97.

Johansson, L.-S.  & Saastamoinen, T. 1999. Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species. Appl. Surf. Sci. 92: 144–145.

Jones, C.F., Lecount, S., Smart, R. St. C. & White, T. 1992. Compositional and structural alteration of pyrrhotite surfaces in solution : XPS and XRD studies. Appl. Surf. Sci. 55: 65-85.

Lee, W., Lewandowski, Z., Nielson, P.H. & Hamilton, W.A. 1995. Role of sulphate-reducing bacteria in corrosion of mild steel: A review. Biofouling.  8:165-194.

Little, B.J., Wagner, P.A., Characklis, W.G. & Lee, W. 1990. Microbial Corrosion, In: Biofilms Characklis, W.G. and Marshall, K.C. (eds.) New York: Wiley,  635-670.

Mathez, E.A. 1987. Carbonaceous matter in mantle xenoliths: composition and relevance to the isoltopes. Geochim. Cosmochim. Acta. 51: 2339-2347.

Mishra, S. and Weimer, J.J. 1997. The iron oxides, structure and properties. In: Proceedings of the 23rd Annual Meeting of the Society of Biometerials, New Orleans, USA, April 1997.

Moulder, J.F., Stickle, W.F., Sobol, P.E. & Bomben, K.D. 1992. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division. United States of America.

Mycroft, J.R., Brancroft, G.M., McIntyre, N.S., Lorimer, J.W. & Hill, I.R. 1990. Detection of sulphur and polysulphides on electrochemically oxidised pyrite surfaces by x-ray photolectron spectroscopy and Raman spectroscopy. J. Electroanal. Chem. 292: 139-152.

Odom, J.M. & Singleton, R. 1992. The Sulfate-Reducing Bacteria: Contemporary Perspectives. New York: Springer-Verlag.

Pradier, C.M., Bertrand, P., Bellon-Fontaine, M.N., Costa, D., Marcus, P., Poleunis, C., Rondot, B. & Walls, M.G. 2000.  AFM and XPS probing of stainless steel surfaces subjected to biological influences. Surf. Interf. Anal. 30: 45-56.

Pratt, A.R., Muir, I.J. and Nesbitt, H.W. 1994. X-ray photoelectron and Auger Spectroscopic Studies of Pyrrhotite and Mechanism of Air Oxidation. Geochim. Cosmochim. Acta. 58: 227-841.

Sosa, R.C., Masy, D. & Rouxhet, P.G. 1994.  Influence of surface properties of carbon black on the activity of adsorbed catalyses. Carbon 13: 1369-1375.

Stipp, S.L. & Hochella, M.F. 1991. Structure and bonding environments at the calcite surface at observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Geochim. Cosmochim. Acta. 55: 1723-1736.

Wolf, A.R. & Ferris, F.G. 1995. Spectroscopy speciation and qualification of metals associated with epilithic biofilms in a watershed impacted by acid mine drainage. In: Mining and the Environment, Hynes, T.P. & Blanchette, M.C. (Eds.), Sudbury 95: CANMET. 805-811.

Xiao,  S.J., Textor, M., Spencer, N.D., Wieland, M., Keller, B. & Sigrist, H. 1997.  Effect of biofilms structures in oxygen distribution and mass transport using XPS. J. Mater. Sci. Mater. Med. 8: 867-875.

 
previous