Sains Malaysiana 37(4):  413-420 (2008)

 

Construction of Insurance Scoring System using Regression Models

(Pembinaan Sistem Skor Insurans melalui Model Regresi)

 

Noriszura Ismail & Abdul Aziz Jemain

Pusat Pengajian Sains Matematik

Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E. Malaysia

 

 

Received :  26 September 2007 / Accepted: 4 January 2008

 

 

ABSTRACT

This study suggests the regression models of Lognormal, Normal and Gamma for the construction of an insurance scoring system. Comparison between Lognormal, Normal and Gamma regression models were also carried out, and the comparison were centered upon three main elements; fitting procedures, parameter estimates and structure of scores. The main advantage of utilizing a scoring system is that the system may be used by insurers to differentiate between good and bad insureds and thus allowing the profitability of insureds to be predicted.

 

Keywords: Profitability; regression models; scoring system

 

 

ABSTRAK

Model regresi Lognormal, Normal dan Gamma dicadang untuk membina suatu sistem skor insurans. Perbandingan di antara model regresi Lognormal, Normal dan Gamma juga dilaksanakan, dan perbandingan ini tertumpu kepada tiga elemen utama; prosedur penyuaian, penganggar parameter dan struktur skor. Kelebihan utama sistem skor adalah ia boleh diterap oleh syarikat insurans untuk membezakan insud yang baik dan kurang baik dan membenarkan peramalan keberuntungan insud dilakukan.

 

Kata kunci: Keberuntungan; model regresi; sistem skor

 

REFERENCES/RUJUKAN

Anderson, D., Feldblum, S., Modlin, C., Schirmacher, D., Schirmacher, E. & Thandi, N. 2004. A practitioner’s guide to generalized linear models. Casualty Actuarial Society Discussion Paper Program, 1-115.

Brockman, M.H. & Wright, T.S. 1992. Statistical motor rating: Making effective use of your data. Journal of the Institute of Actuaries 119(3): 457-543.

Coutts, S.M. 1984. Motor insurance rating, an actuarial approach. Journal of the Institute of Actuaries 111: 87-148.

Dobson, A.J. 2002. An introduction to generalized linear models (2nd. edition). New York: Chapman & Hall.

Ismail, N. & Jemain, A.A. 2005. Bridging minimum bias and maximum likelihood methods through weighted equation. Casualty Actuarial Society Forum Spring: 367-394.

Ismail, N. & Jemain, A.A. 2007. Handling overdispersion with Negative Binomial and Generalized Poisson regression models. Casualty Actuarial Society Forum Winter: 103-158.

Karlis, D. & Rahmouni, M. 2007. Analysis of defaulters’ behavior using the Poisson-mixture approach. IMA Journal of Management Mathematics 18: 297-311.

Lawrence, B. 1996. Motor insurance in Singapore. In Low Chan Kee (ed.). Actuarial and insurance practices in Singapore. pp. 191-216. Singapore: Addison-Wesley.

McCullagh, P. & Nelder, J.A. 1989. Generalized Linear Model (second edition). London: Chapman & Hall.

Mildenhall, S.J. 1999. A systematic relationship between minimum bias and generalized linear models. Proceedings of the Casualty Actuarial Society 86(164): 93-487.

Miller, M.J. & Smith, R.A. 2003. The relationship of credit-based insurance scores to private passenger automobile insurance loss propensity. Presentation to NAIC. July, 2003.

Vojtek, M. & Kocenda, E. 2006. Credit scoring models. Czech Journal of Economics and Finance 56(3-4): 152-167.

Wu, C.P. & Lucker, J.R. 2004. A view inside the Black Box: A review and analysis of personal lines insurance credit scoring models filed in the state of Virginia. Casualty Actuarial Society Forum Winter: 251-290.

Wu, C.P. & Guszcza, J.C. 2004. Does credit score really explain in losses? Multivariate analysis from a data mining point of view. Casualty Actuarial Society Forum Winter: 113-138.

 

 

 

previous