Sains Malaysiana
37(4): 413-420 (2008)
Construction of Insurance Scoring System using Regression
Models
(Pembinaan
Sistem Skor Insurans melalui Model Regresi)
Noriszura
Ismail & Abdul Aziz Jemain
Pusat
Pengajian Sains Matematik
Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600
UKM Bangi, Selangor D.E. Malaysia
Received
: 26 September 2007 / Accepted: 4 January 2008
ABSTRACT
This
study suggests the regression models of Lognormal, Normal and
Gamma for the construction of an insurance scoring system. Comparison
between Lognormal, Normal and Gamma regression models were also
carried out, and the comparison were centered upon three main
elements; fitting procedures, parameter estimates and structure
of scores. The main advantage of utilizing a scoring system
is that the system may be used by insurers to differentiate
between good and bad insureds and thus allowing the profitability
of insureds to be predicted.
Keywords:
Profitability; regression models; scoring system
ABSTRAK
Model
regresi Lognormal, Normal dan Gamma dicadang untuk membina suatu
sistem skor insurans. Perbandingan di antara model regresi Lognormal,
Normal dan Gamma juga dilaksanakan, dan perbandingan ini tertumpu
kepada tiga elemen utama; prosedur penyuaian, penganggar parameter
dan struktur skor. Kelebihan utama sistem skor adalah ia boleh
diterap oleh syarikat insurans untuk membezakan insud yang baik
dan kurang baik dan membenarkan peramalan keberuntungan insud
dilakukan.
Kata
kunci: Keberuntungan; model regresi; sistem skor
REFERENCES/RUJUKAN
Anderson, D., Feldblum, S., Modlin, C., Schirmacher, D., Schirmacher,
E. & Thandi, N. 2004. A practitioner’s guide to generalized
linear models. Casualty Actuarial Society Discussion Paper
Program, 1-115.
Brockman, M.H. & Wright, T.S. 1992. Statistical motor rating: Making
effective use of your data. Journal of the Institute of Actuaries
119(3):
457-543.
Coutts, S.M. 1984. Motor insurance rating, an actuarial approach. Journal
of the Institute of Actuaries 111:
87-148.
Dobson, A.J. 2002. An introduction to generalized
linear models (2nd. edition). New York: Chapman
& Hall.
Ismail, N. & Jemain, A.A. 2005. Bridging minimum
bias and maximum likelihood methods through weighted equation.
Casualty Actuarial Society Forum Spring: 367-394.
Ismail, N. & Jemain, A.A. 2007. Handling overdispersion
with Negative Binomial and Generalized Poisson regression models.
Casualty Actuarial Society Forum Winter: 103-158.
Karlis, D. & Rahmouni, M. 2007. Analysis of defaulters’
behavior using the Poisson-mixture approach. IMA Journal
of Management Mathematics 18: 297-311.
Lawrence, B. 1996. Motor insurance in Singapore. In
Low Chan Kee (ed.). Actuarial and insurance practices in
Singapore. pp. 191-216. Singapore: Addison-Wesley.
McCullagh, P. & Nelder, J.A. 1989. Generalized
Linear Model (second edition). London: Chapman & Hall.
Mildenhall, S.J. 1999. A systematic relationship between
minimum bias and generalized linear models. Proceedings of
the Casualty Actuarial Society 86(164): 93-487.
Miller, M.J. & Smith, R.A. 2003. The relationship
of credit-based insurance scores to private passenger automobile
insurance loss propensity. Presentation to NAIC. July,
2003.
Vojtek, M. & Kocenda, E. 2006. Credit scoring
models. Czech Journal of Economics and Finance 56(3-4):
152-167.
Wu, C.P. & Lucker, J.R. 2004. A view inside the
Black Box: A review and analysis of personal lines insurance
credit scoring models filed in the state of Virginia. Casualty
Actuarial Society Forum Winter: 251-290.
Wu, C.P. & Guszcza, J.C. 2004. Does credit score
really explain in losses? Multivariate analysis from a data
mining point of view. Casualty Actuarial Society Forum
Winter: 113-138.