Sains Malaysiana
37(4): 421-427 (2008)
Approximating Offset Curves by Rational Bézier
Cubics and Quartics
(Penganggaran Lengkung Ofset dengan Kubik Nisbah Bézier
Dan Kuartik Nisbah Bézier)
Chong Nyuk Sian
Department of Mathematics, Faculty of Science and Technology
Universiti Malaysia Terengganu, 21030 Kuala Terengganu
Terengganu, Malaysia
Received: 25 January 2008 / Accepted: 24 March 2008
ABSTRACT
Offset curves arise in a variety of industrial applications such
as robot’s path planning and numerical control machining in
the textile, shoe and automobile industries. Rational curves,
in particular the rational cubics, are widely accepted as a
standard representation for design problems and geometric modellers
but their offset curves are in general not rational. Given
a rational cubic or quartic spline, we present two local methods
to approximate its offset curve using a rational Bézier spline
of the same degree. This approximate offset curve interpolates
the positions and unit tangents at both ends of the exact offset
curve segments and its curvatures at these endpoints are consistent
with the offset distance and the corresponding curvatures of
the given curve. It has second order geometric continuity if
the given curve is so. The accuracy of the approximation can
be refined by a local iterative subdivision process.
Keywords: Approximation; offset curve; rational Bézier curve
ABSTRAK
Lengkung
ofset timbul dalam pelbagai jenis aplikasi industri seperti
perancangan laluan robot dan mesin kawalan berangka dalam industri
tekstil, kasut dan automobil. Lengkung nisbah, khususnya lengkung
kubik nisbah telah diterima secara meluas sebagai suatu perwakilan
piawai bagi masalah-masalah reka bentuk dan pemodelan geometri
tetapi secara umumnya, lengkung ofsetnya adalah bukan nisbah.
Diberi suatu lengkung kubik atau kuartik nisbah, kita mewakilkan
dua kaedah setempat untuk menganggar lengkung ofsetnya dengan
menggunakan suatu splin Bézier nisbah yang sama darjah. Lengkung hampiran
ofset ini menginterpolasi kedudukan dan tangen unit di kedua-dua
titik hujung tembereng ofset sebenar dan kelengkungannya pada
titik-titik hujung ini adalah konsisten dengan jarak ofset serta
kelengkungan yang sepadan dengan lengkung yang diberi. Ia mempunyai
keselanjaran geometri berdarjah dua jika lengkung yang diberi
juga bersifat sedemikian. Kejituan penganggaran boleh diperhaluskan
melalui proses lelaran sub-bahagian setempat.
Kata
kunci: Lengkung ofset; lengkung nisbah Bézier; penganggaran
REFERENCES/RUJUKAN
Farin, G. 1996. Curves and Surfaces for Computer
Aided Geomteric Design, 4th ed.
Academic Press, Inc, Boston.
Farouki, R.T. and Sakkalis, T. 1990. Pythagorean hodographs.
IBM J. Research & Development 34: 736-752.
Hoschek, J. 1988. Spline approximation of offset curves.
Computer Aided Geometric Design 5: 33-40.
Klass, R. 1983. An offset spline approximation for plane
cubic splines. Computer Aided Design 15: 297-299.
Lee, In-Kwon, Kim, Myung-Soo and Elber, Gershon. 1996.
Planar curve offset based on circle approximation. Computer
Aided Design 28: 617-630.
Pham, B. 1988. Offset approximation of uniform B-splines.
Computer Aided Design 20:
471-474.
Pham, B. 1992. Offset curves and surfaces: a brief survey.
Computer Aided Design 24:
223-229.
Piegl, L. 1987. Interactive data interpolation by rational
Bézier curves. IEEE Computer Graphics & Applications7:
45-58.
Tiller W. and Hanson, E.G. 1984. Offsets of two-dimensional
profiles. IEEE Computer Graphics & Applications
4: 36-46.