Sains Malaysiana 38(1): 119-123(2009)

 

 

Feedback Control of Thermocapillary Convection in a

Rotating Fluid Layer with Free-Slip Bottom

(Kawalan Suapbalik Olakan Termokapilari dalam Lapisan Bendalir

Berputar dengan Bawahnya Tergelincir)

 

 

Ishak Hashim

School of Mathematical Sciences, Universiti Kebangsaan Malaysia

43600 Bangi Selangor, Malaysia

 

Zailan Siri

Institute of Mathematical Sciences, University of Malaya

50603 Kuala Lumpur, Malaysia

 

 

Received:  2 May 2008 / Accepted: 20 June 2008

 

 

abstract

 

The linear stability theory is applied to investigate the effects of rotation and feedback control on the onset of steady and oscillatory thermocapillary convection in a horizontal fluid layer heated from below with a free-slip bottom. The thresholds and codimension-2 points for the onset of steady and oscillatory convection are determined. The effect of feedback control on the parameter space dividing the steady and oscillatory convection regions is demonstrated.

 

Keyword:  Feedback control; marangoni convection; rotation; surface tension; thermocapillary

 

 

 

ABSTRAK

 

Teori kestabilan linear digunakan untuk mengkaji kesan putaran dan kawalan suapbalik terhadap permulaan olakan termokapilari mantap dan berayun dalam lapisan mengufuk bendalir yang dipanaskan dari bawah dengan bawahnya tergelincir. Titik di ambang dan kodimensi-2 untuk permulaan olakan mantap dan berayun ditentukan. Kesan kawalan suapbalik terhadap ruang parameter  memisahkan rantau olakan mantap dan berayun ditunjukkan.

 

Kata kunci: Kawalan suapbalik; ketegangan permukaan; olakan marangoni; putaran; termokapilari 

 

 

REFERENCES/RUJUKAN

 

 

Arifin, N. M., Nazar, R. M. & Senu, N. 2007. Feedback control of the Marangoni-Bẽnard instability in a fluid layer with a free-slip bottom.  J. Phys. Soc. Japan. 76: 014401.

Bau, H. H. 1999.  Control of Marangoni-Bẽnard convection. Int. J. Heat Mass Transfer. 42: 1327-1341.

Boeck, T., Thess, A. 1997.  Inertial Bẽnard-Marangoni convection.  J. Fluid Mech. 350:149-175.

Chandrasekhar, S.  1961. Hydrodynamic and Hydromagnetic Stability, Oxford, UK. Oxford University Press.

Chang, F.P. & Chiang, K.T. 1998. Oscillatory instability analysis of Bẽnard-Marangoni convection in a rotating fluid under a uniform magnetic field. Int. J. Heat Mass Transfer. 41(17):2667-2675.

Char, M.I., Chiang, K.T. & Jou, J.J. 1997. Oscillatory instability analysis of Bẽnard-Marangoni convection in a rotating fluid with internal heat generation. Int. J. Heat Mass Transfer.  40(4):857-867.

Garcia-Ybarra, P. L., Castillo, J. L. & Velarde, M. G.  1987. Bẽnard-Marangoni convection with a deformable interface and poorly conducting boundaries. Phys. Fluids. 30(9): 2655-2661.

Gouesbet, G., Maquet, J., Rozẽ, C. & Darrigo, R. 1990. Surface-tension-and coupled buoyancy-driven instability in a horizontal liquid layer: Overstability and exchange of stability. Phys. Fluids. A 2 (6):903-911.

Hashim, I. , Sarma, W.  2006.  On the onset of Marangoni convection in a rotating fluid layer.  J. Phys. Soc. Japan. 75:035001.

Hashim, I. & Sarma, W. 2007.  On oscillatory Marangoni convection in a rotating fluid layer subject to a uniform heat flux from below.  Int. Comm. Heat & Mass Trans. 34: 225-230.

Hashim, I. & Sarma, W. 2007.  On oscillatory Marangoni convection in rotating fluid layer with flat free surface subject to uniform heat flux from below.  Int. J. Heat Mass Transfer.  50:4508-4511.

Hayat, T. 2005.  Oscillatory flow of a JohnsonSegalman fluid in a rotating system. Z. angew. Math. Mech. 18:313-321.

Hayat, T., Fetecau, C. & Sajid, M. 2008. On MHD transient flow of a Maxwell fluid in a porous medium and rotating frame. Phys. Lett. A 10 :1639-1644.

Hayat, T., Khan, S. & Khan, M.  2008.  Exact solution for rotating flows of a generalized Burgers' fluid in a porous space.  Appl. Mathl. Model. 32:749-760.

Hayat, T., Nadeem, S. & Asghar, S., Siddiqui, A.  2001.  Fluctuating flow of a third order fluid on a porous plate in a rotating medium. Int. J. Non-Linear Mech. 36 :901-916.

Hayat, T., Nadeem, S., Asghar. 2004. Hydromagnetic Couette flow of an Oldroyd-B fluid in a rotating system. Int. J. Engrng. Sci. 42: 65-78.

Johnson D., & Narayanan, R. 1996. Experimental Observation of dynamic mode switching in interfacial-tension-driven convection near a codimension-two point. Phys. Rev. E 54(4): 31-2-3104

Kaddame, A., Lebon, G. 1994.  Bẽnard-Marangoni convection in a rotating fluid with and without surface deformation.  Appl. Sci. Res. 52:295-308.

Kaddame, A. & Lebon, G. 1994. Overstability in rotating Bẽnard-Marangoni cells. Microgravity Quart. 4(2): 69-74.

McConaghy, G.A. & Finlayson, B.A. 1969. Surface tension driven oscillatory instability in a rotating fluid layer. J. Fluid Mech. 39 (part 1): 49-55.

Namikawa, T., Takashima, M. & Matsushita, S.  1970.  The effect of rotation on convective instability induced by surface tension and buoyancy. J. Phys. Soc. Japan 28(5):1340-1349.

Pearson, J.R.A. 1958. On convection cells induced by surface tension. J. Fluid Mech. 4: 489-500.

Sarma, G.S.R. 1979. Marangoni convection in a fluid layer under the action of a transverse magnetic field.  Space Res. 19:575-578.

Sarma, G.S.R. 1981. Marangoni convection in a liquid layer under the simultaneous action of a transverse magnetic field and rotation.  Adv. Space Res. 1:55-58.

Sarma, G.S.R. 1983.  Bẽnard-Marangoni instability in a rotating liquid layer subjected to a transverse magnetic field.  Adv. Space Res. 3(5):33-36.

Sarma, G.S.R. 1985.  Effects of interfacial curvature and gravity waves on the onset of thermocapillary convective instability in a rotating liquid layer subjected to a transverse magnetic field.  PhysicoChem. Hydrodyn. 6(3):283:300.

Sarma, G.S.R. 1987.  Interaction of surface-tension and buoyancy mechanisms in horizontal liquid layers. J. Thermophysics. 1(2):129-135.

Scriven, L.E. & Sternling, C. V.  1964. On cellular convection driven by surface-tension gradients: Effects of mean surface tension and surface viscosity. J. Fluid Mech. 19: 321-340.

Tagare, S., Babu, A. B. & Rameshwar, Y.  2008. Rayleigh-Bẽnard convection in rotating fluids. Int. J. Heat Mass Transfer. 51:1168-1178.

Takashima, M. & Namikawa, T. 1971. Surface-tension-driven convection under the simultaneous action of a magnetic field and rotation. Phys. Lett. 37A:55-56.

Tang, J. & Bau, H. H. 1993.  Feedback control stabilization of the no-motion state of a fluid confined in a horizontal. J. Fluid Mech. 257: 485-505.

Tang, J. & Bau, H. H. 1998.  Numerical investigation of the stabilization of the no-motion state of a fluid layer heated from below and cooled from above.  Phys. Fluids. 10:1597-1610.

Vidal, A. & Acrivos, A. 1996. The influence of Coriolis force on surface-tension-driven convection.  J. Fluid Mech. 26: 807-818.

Wilson, S. K. 1994 The effect of a uniform magnetic field on the onset of steady Marangoni convection in a layer of conducting fluid with a prescribed heat flux at its lower boundary. Phys. Fluids. 6 (11): 3591-3600.

Wilson, S. K.  1997.  The effect of uniform internal heat generation on the onset of steady Marangoni convection in a horizontal layer of fluid. Acta Mechanica 124:63-78.

 

previous