Sains Malaysiana 38(3): 287-294(2009)

 

Identification and Characterisation of a Copper-inducible Metallothionein

Gene from Cockle, Anadara granosa

(Pengenalpastian dan Pencirian Gen Metalotionin yang Diaruh oleh Logam

Kuprum dalam Kerang, Anadara granosa)  

 

Kok-Kee Wong1, Noor-Arniwati Mat-Daud2, Roohaida Othman2, Zubir Din3, Kiew-Lian Wan2 & Salmijah Surif2*

 

1School of Environmental & Natural Resource Sciences

Faculty of Science & Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor DE, Malaysia

 

2School of Biosciences & Biotechnology, Faculty of Science & Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi

Selangor DE, Malaysia

 

3Centre for Estuarine & Coastal Studies, Universiti Sains Malaysia

11800 Minden, Penang, Malaysia

Received: 1 July 2008/Accepted: 20 October 2008

 

 

ABSTRACT

 

The cockle, Anadara granosa, was experimentally exposed to low (0.1 mg/L) and sublethal (1.0 mg/L) doses of copper (Cu) for a period of 24 hrs. Significant increase in Cu concentrations in whole tissues and hepatopancreas compared to control animals were observed. In order to study the effect of copper exposure at molecular levels, a subtractive cDNA library was constructed from the hepatopancreas of cockles exposed to 1.0 mg/L Cu. Screening of the subtractive cDNA library using reverse northern analysis resulted in several differentially expressed genes, including one that codes for metallothionein (MT). The complete coding sequence of the MT gene (designated as AnaMT2) reveals an open reading frame of 234 bp in length that encodes a 77 amino acid polypeptide as revealed by the deduced amino acid composition. Although showing similarities with other molluscan MTs, AnaMT2 can be distinguished by its lower glycine and higher asparagine and proline content. Expression analysis of the AnaMT2 by northern analysis indicated higher mRNA level in cockle exposed to 1.0 mg/L Cu and was undetectable in those treated with 0.1 mg/L. This suggests that AnaMT2 represents a primarily inducible MT not highly expressed under basal conditions.  

 

Keywords:   Cockle copper; metallothionein; subtractive hybridisation

 

 

ABSTRAK

 

Kerang, Anadara granosa didedahkan kepada logam kuprum (Cu) pada dos rendah (0.1 mg/L) dan dos sub-maut (1.0 mg/L) untuk tempoh 24 jam. Peningkatan aras Cu yang signifikan diperhatikan pada kedua-dua tisu keseluruhan kerang serta tisu hepa-opankreas yang terdedah kepada Cu berbanding sampel kawalan. Untuk mengkaji kesan Cu pada aras molekul, satu perpustakaan cDNA subtraktif telah dibina menggunakan tisu hepatopankreas kerang yang didedahkan kepada 1.0 mg/L Cu. Penyaringan perpustakaan cDNA subtraktif ini, menggunakan pemblotan northern berbalik, menghasilkan beberapa gen yang diekspres secara berbeza berbanding kawalan, termasuklah gen yang mengkodkan metalotionin (MT). Gen MT jujukan penuh (AnaMT2) ini mempunyai jujukan rangka terbuka ORF bersaiz 234 pb dan mengekodkan 77 asid amino polipeptida melalui komposisi asid amino yang dideduksi. Walaupun terdapat persamaan dengan MT daripada kumpulan moluska, AnaMT2 ini dapat dibezakan daripada yang lain daripada segi kandungan asparagina dan prolina yang secara relatifnya lebih tinggi dan glisina yang lebih rendah. Kajian pengekspresan gen AnaMT2 menggunakan teknik pemblotan northern menunjukkan aras pengekspresan mRNA agak tinggi dalam tisu terdedah kepada 1.0 mg/L Cu dan tidak dapat dikesan dalam sampel yang didedahkan kepada 0.1 mg/L Cu. Ini mencadangkan bahawa AnaMT2 adalah MT yang diinduksi logam dan kurang diekspres  dalam keadaan biasa.

 

Kata kunci: Kerang; kuprum; metalotionin; penghibridan subtraktif

 

 

REFERENCES

 

 

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.  Nucl. Acids Res. 25:  3389-3402.

Barsyte, D., White, K.N. &  Lovejoy, D.A. 1999. Cloning and characterization of metallothionein cDNAs in the mussel Mytilus edulis L. digestive gland. Comp. Biol. Physiol. 122C: 287-296.

Bebianno, M.J., Machado, L.M. 1997. Concentrations of metals and metallothioneins in Mytilus galloprovincialis along the south coast of Portugal . Mar. Pollut.Bull. 34: 666-671.

Blasco, J. & Puppo, J. 1999. Effect of heavy metals (Cu, Cd & Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia). Comp. Biol. Physiol. 122C: 253-263.

Cajaraville, M.P., Bebianno, M.J., Blasco, J., Porte, C., Sarasquete, C., & Viarengo, A. 2000. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula : a practical approach. Sci. Total Environ. 247: 295-311.

Chan, M.K., Othman, R., Zubir, D. & Salmijah, S. 2002. Induction of a putative metallothionein gene in the blood cockle, Anadara granosa, exposed to cadmium. Comp. Biol. Physiol. 131C: 123-132.

Chomczynski, P. & Sacchi, N. 1987. Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform. Anal. Biochem. 162: 156-159.

Clayton , M.E. , Steinmann, R., Fent, K. 2000. Different expression patterns of heat shock proteins hsp 60 and hsp 70 in zebra mussels (Dreissena polymorpha) exposed to copper and tributyltin. Aqua. Toxicol. 47: 213-226.

Correia, A.D., Livingstone, D.R. & Costa, M.H. 2002. Effects of water-borne copper on metallothonein and lipid peroxidation in the marine amphipod Gammarus locusta. Mar. Environ. Res. 54: 357-360.

Czupryn, M. & Falchuk, K. 1990. Determination of metals in metallothionein preparation by atomic absorption spectroscopy. Methods Enzymol. 205: 415-418.

de Astudillo, L.R., Yen, I.C., Agard, J., Bekele, I. & Hubbard, R. 2002.  Heavy metals in green mussel (Perna viridis) and oysters (Crassostrea sp.) from Trinidad and Venezuela . Arch. Environ. Contam. Toxicol. 42: 410 –415.

Department of Environment (DOE), Ministry of Science, Technology & the Environment Malaysia , 2002. Laporan Alam Sekitar.

Eduardo, M., Elena, B.K., Araceli, D.A., Dulce, M.L.A., Olimpia, C., Nilda, G. & Antonio, A. 2005. Cloning, tissue expression and metal inducibility of an ubiquitous metallothionein from Panulirus argus. Gene. 361: 140-148.

Frohman, M.A., Dush, M.K. & Martin, G.R. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. U.S.A. 85: 8998-9002.

George, S.G. 1992. Biochemical and cytological assessments of metal toxicity in marine animals. In: W.R, Furness, P.S. Rainbow (Eds.), Heavy metals in the marine environment.  New York, Plenum Press, pp. 123-142.

Glickman, L.T. 1991. Animals as sentinels of environmental health hazards. National Academy Press, Washington.

Jing, G., Li, Y., Xie, L.P. &  Zhang R.Q. 2006. Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comp. Biol. Physiol. 144C:  184-190.

Kägi, J.H.R. &  Schäffer, A. 1988. Biochemistry of metallothionein. Biochem. 27: 8515–8909.

Kägi, J.H.R. & Valee, B.L. 1960. Metallothionein. A cadmium and zinc containing protein from equine renal cortex. J. Biol. Chem. 235: 3460-3465.

Klaassen, C.D. & Liu, J. 1998. Induction of metallothionein as an adaptive mechanism affecting the magnitude and progression of toxicological injury. Environ. Health Perspect. 106: 297–300.

Liang, L.N., He, B., Jiang, G.B., Chen, D.Y. & Yao , Z.W. 2004. Evaluation of molluscs as biomonitors to investigate heavy metal contaminations along Chinese Bohai, Sea. Sci. Total Environ. 324: 105-113.

Linde, A.R., Sanchez-Galan, S., Klein, D., Garcia-Vasquez, E. & Summer, K.H. 1999. Metallothionein and heavy metals in brown trout (Salmo trutta) and European eel ( Anguilla anguilla): A comparative study. Ecotoxicol. Environ. Safety, 44: 168-173.

Malaysian Food Act & Regulations. 1996. Laws of Malaysia . 7th Ed. Kuala Lumpur: MDC Publishers Printers Sdn Bhd. pp.219.

McCarthy, J.F. & Shugart, L.R. 1990. Biomarkers of environmental contamination. Florida , Lewis Publishers, Boca Raton , pp. 457.

Mat, I., Maah, M.J. & Johari, A. 1994. Trace metal geochemical associations in sediments from culture-bed of Anadara granosa. Mar. Pollut. Bull. 28: 319-323.

Nasci, C., Da Ros, L., Nesto, N., Sperni, L., Passarini, F. & Pavoni, B. 2002. Biochemical and histochemical responses to environmental contaminations in clam, Tapes philippinarum, transplanted to different polluted areas of Venice Lagoon, Italy . Mar. Environ. Res. 50: 425-430.

Nemer, M., Wilkinson, D.G., Travaglini, E.C., Sternberg, E.J. & Butt, T.R. 1985. Sea urchin metallothionein sequence: key to an evolutionary diversity. Proc. Natl. Acad. Sci. U.S.A. 82: 4992-4994.

Paris-Palacios, S., Biagianti-Risbourg, S., Fouley, A. & Vernet, G. 2000. Metallothioneins in liver of Rutilus rutilus exposed to Cu2+: Analysis by metal summation, SH determination and spectrofluorometry. Comp. Biochem. Physiol. 126C: 113-122.

Rand, G.M. & Petrocelli, S.R. 1985. Introduction of fundamentals to aquatic toxicology. Hemisphere Co., Washington , pp. 1-30.

Ringwood, A.H. & Brouwer, M. 1993. Expression of constitutive and metal-inducible metallothioneins in oyster embryos (Crassostrea virginica). Comp. Biochem. Physiol. 106B: 523-529.

Thompson, J.D., Higgins, D.G. & Gibson, T.J. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680.

Thomson, J.D., Pirie, B.J.S. & George, S.G. 1985. Cellular metal distribution in Pacific oyster, Crassostrea gigas (Thun.) determined by quantitative X-ray microphone analysis. J. Exp. Mar. Biol. Ecol. 85: 47-45.

Tóth, L., Juhász, M., Varga, T., Csikkel-Szdnoki, A. & Nemesók, J. 1996. Some effects of CuSO4 in carp. J. Environ. Sci. Health. 31: 627-635.

Unger , M.E. , Chen, T.T., Murphy, C.M., Vestling, M.M., Fenselau, C. & Roesjadi, G. 1991. Primary structure of molluscan metallothioneins deduced from PCR-amplified cDNA and mass spectrometry of purified proteins. Biochim. Biophys. Acta. 1074: 371-377.

Vasak, M., & Hasler, D.W. 2000. Metallothioneins: new functional and structural insights. Curr. Opin. Chem. Biol. 4: 177-183.

WHO. 1982. Toxicological evaluation of certain food additives and contaminants. Joint FAO/WHO Expert Committee on Food Additives, WHO Food Additives Series no 17, World Health Organization, Geneva , pp. 28–35.

Zorita, I., Ortiz-Zarragoitia, M., Soto, M., & Cajaraville, M.P. 2006. Biomarkers in mussels from a copper site gradient ( Visnes , Norway ): An integrated biochemical, histochemical and histological study. Aqua. Toxicol. 78S: S109-S116.

*Corresponding author; email:salmij@ukm.my