Sains Malaysiana 38(4)(2009):
511–520
Optimization of Extraction Conditions of Total
Phenolic Compounds from Star
Fruit (Averrhoa carambola L.) Residues
(Pengoptimuman Parameter Pengektrakan
Jumlah Sebatian Fenolik
daripada Residu Belimbing
(Averrhoa carambola L.)
C.F. Yap1, C.W. Ho1, *, W.M. Wan Aida2, S.W. Chan1,
C.Y. Lee1 & Y. S. Leong1
1Department of Food Science and Nutrition
Faculty of Applied Sciences, UCSI University
No. 1, Jalan Menara Gading, UCSI Heights
56000 Kuala Lumpur, Malaysia
2School of Chemical Sciences and Food
Technology
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
43600 Bangi, Selangor D.E., Malaysia
Received: 8 August 2008 / Accepted: 20 December 2008
ABSTRACT
A study was
conducted to optimize the extraction conditions for total phenolic contents (TPC) of star fruit residues using response surface
methodology (RSM). By using Design
Expert (Version 6.0.10, Stat-Ease Inc., Minneapolis) statistical software, a
five-level, three-factor central composite rotatable design (CCRD) was employed to investigate the effects of three
independent variables including solvent concentration, X1 (40-80%), extraction temperature, X2 (25-55°C), and extraction time, X3 (90-270 min) on total phenolic content. These
independent variables were coded at three levels and their natural values
chosen according to preliminary experimental results. In single factor
experiments, 60% acetone, 180 minutes extraction time and 40°C extraction
temperature were set as center points due to their highest TPC value, which were 2366.71, 2436.03, and 2510.95 mg GAE/100 g dry weight (DW) of star fruit residues, respectively. The results
showed that the acetone concentration was statistically the most significant
factor (p<0.01) and the optimal extraction conditions obtained were: acetone
concentration, 65.34%; extraction temperature, 43.18°C; and extraction time,
233.51 min. Under the above-mentioned conditions, the experimental TPC was 965.65 ± 30.87mg GAE/100 g DW, which was well matched with the predicted value, 965.52 mg GAE/100 g DW.
Keywords:
Central composite rotatable design; response surface methodology; total
phenolic compounds; star fruit residues
ABSTRAK
Kajian ini dijalankan untuk mengoptimumkan parameter pengekstrakan
jumlah sebatian fenolik daripada residu belimbing menggunakan Kaedah Permukaan
Respons (RSM). Lima tahap, tiga faktor reka bentuk komposit putaran tengah (RKPT) digunakan untuk mengkaji kesan tiga faktor iaitu
kepekatan pelarut, X1 (40-80%), suhu
pengekstrakan, X2 (25-55°C) dan masa
pengekstrakan, X3 (90-270 min) terhadap
jumlah sebatian fenolik. Nilai ketiga-tiga faktor pengekstrakan ini dipilih
berdasarkan kepada keputusan ujikaji awalan. Dalam ujikaji faktor individu, aseton
berkepekatan 60%, 180 min masa pengekstrakan dan 40°C suhu pengekstrakan
ditetapkan sebagai titik tengah disebabkan oleh perolehan nilai jumlah sebatian
fenolik yang tertinggi iaitu 2366.71, 2436.03, dan 2510.95 mg GAE/100 g berat kering (BK) daripada residual belimbing. Dari segi statistik, keputusan ini
menunjukkan bahawa kepekatan aseton merupakan faktor yang paling signifikan
(p<0.01) dan keadaan optimum pengekstrakan diperolehi ialah: kepekatan
aseton, 63.54%; suhu pengekstrakan,43.18°C dan masa
pengekstrakan, 233.51 min. Ujian pengesahan pada keadaan optimum tersebut
menunjukkan jumlah sebatian fenolik ialah 965.65 ± 30.87 mg GAE/100 g berat kering (BK) sepadan dengan nilai dijangka iaitu 965.52 mg GAE/100 g berat kering (BK).
Kata kunci:
Jumlah sebatian fenolik; kaedah respon permukaan; rekabentuk komposit putaran
tengah; residu belimbing
REFERENCES
Abdalla, A.E.M.,
Darwish, S.M., Ayad, E.H.E. & Hamahmy, R. M.E. 2007. Egyptian mango
by-product 2: Antioxidant and antimicrobial activities of extract and oil from
mango seed kernel. Food Chemistry 103: 1141-115.
Alasalvar, C.,
Karamac, M., Amarowicz, R. & Shahidi, F. 2006. Antioxidant and
antiradical activities in extracts of hazelnut kernel (Corylus avellana L.) and hazelnut green leafy cover. Journal of Agricultural and Food
Chemistry 54: 4826-4932.
Anon. 2007. Waste management
conference and exhibition 2007 organised by Ensearch Sunway
Pyramid.<http://aplikasi.kpkt. gov.my/ucapan.nsf/8521d968204e8b454825697400224ca 6/9361ab79426398a74825737d00291643?OpenDocument [Accessed 24 January 2008]
Balasundram, N., Sundram, K. & Samman,
S. 2006. Phenolic compounds in plants and agri-industrial by-products:
Antioxidant activity, occurrence, and potential uses. Food Chemistry 99:
191-203.
Chethan, S. &
Malleshi, N.G. 2007. Finger millet polyphenols: Optimization of
extraction and the effect of pH on their stability. Food Chemistry 105:
862-870.
Liu, Q. & Yao,
H.Y., 2007. Antioxidant activities of barley seeds extracts. Food
Chemistry 102: 732-737.
Makris, D.P.,
Boskou, G. & Rikopoulos, N.K. 2007. Polyphenolic content and in vitro
antioxidant characteristics of wine industry and other agri-food solid waste
extracts. Journal of Food Composition and Analysis 20: 125-132.
Mane, C., Souquet,
J.M., Olle, D., verries, C., veran, F., Mazerolles, G., Cheynier, v. &
Fulcrand, H. 2007. Optimization of simultaneous flavanol, phenolic
acid, and anthocyanin extraction from grapes using an experimental design:
Application to the characterization of champagne grape varieties. Journal of
Agricultural and Food Chemistry 55: 7224-7233.
Okonogi, S., Duangrat, C., Anuchpreeda, S.,
Tachakittirungrod, S. & Chowwanapoonpohn, S. 2007. Comparison of
antioxidant capacities and cytotoxicities of certain fruit peels. Food
Chemistry 103: 839-846.
Pathirana, C. L. & Shahidi, F. 2005. Optimization of extraction of phenolic compounds from wheat using
response surface methodology. Food Chemistry 93: 47-56.
Peschel, W.,
Rabaneda, F.S., Diekmann, W., Plescher, A., Gartzia, I., Jimenez, D., Raventos,
R.L., Buxaderas, S. & Codina, C. 2006. An industrial approach in the search of
natural antioxidants from vegetable and fruit wastes. Food Chemistry 97:
137-150.
Rodrigues, S., Pinto, G.A.S. &
Fernandes, F.A.N. 2008. Optimization of untrasound extraction
of phenolic compounds from coconut (Cocos nucifera) shell powder by
response surface methodology. Ultrasound
Sonochemistry 15: 95- 100.
Shui, G.H. &
Leong, L.P. 2004. Analysis of polyphenolic
antioxidants in star fruit using liquid chromatography and mass spectrometry. Journal of Chromatography A 1022: 67-75.
Shui, G.H. &
Leong, L.P., 2006. Residue from star fruit as
valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chemistry 97: 277-284.
Silva, E.M.,
Rogez, H. & Larondelle, Y. 2007. Optimization of extraction of phenolics
from Inga edulis leaves using response surface methodology. Separation
and Purification Technology 55: 381-38.
Solomons, T.W.G. 1994. Fundamentals
of Organic Chemistry. 4th Ed. United State of America: Wiley.
Spigno, G. &
Faveri, D.M.D. 2007. Antioxidants from grape stalks and marc:
Influence of extraction procedure on yield, purity and antioxidant power of the
extracts. Journal of Food Engineering 78: 793-801.
ven, C.v.D., Gruppen,
H., Bont, D.B.A. & voragen, A.G.J. 2002. Optimization of
the angiotensin converting enzyme inhibition by whey protein hydrolysates using
response surface methodology. International Dairy Journal 12:
813-820.
Wang, J., Sun, B.,
Cao, Y.P., Tian, Y. & Li, X.H. 2008. Optimization of
ultrasound-assisted extraction of phenolic compounds from wheat bran. Food
Chemistry 106: 804-810.
Zhang, Z.S., Li,
D., Wang, L.J., Ozkan, N., Chen, X.D., Mao, Z.H. & Yang, H.Z. 2007. Optimization of ethanol-water extraction of lignans from flaxseed. Separation and Purification Technology 57: 17-24.
*Corresponding author; email: cwho@ucsi.edu.my
|