Sains Malaysiana 38(4)(2009): 511–520 

 

 

Optimization of Extraction Conditions of Total Phenolic Compounds from Star Fruit (Averrhoa carambola L.) Residues

(Pengoptimuman Parameter Pengektrakan Jumlah Sebatian Fenolik

daripada Residu Belimbing (Averrhoa carambola L.)

 

C.F. Yap1, C.W. Ho1, *,  W.M. Wan Aida2, S.W. Chan1,

C.Y. Lee1 & Y. S. Leong1

 

1Department of Food Science and Nutrition

Faculty of Applied Sciences, UCSI University

No. 1, Jalan Menara Gading, UCSI Heights

56000 Kuala Lumpur, Malaysia

 

2School of Chemical Sciences and Food Technology

Faculty of Science and Technology

Universiti Kebangsaan Malaysia

43600 Bangi, Selangor D.E., Malaysia

 

Received: 8 August 2008 / Accepted: 20 December 2008

 

ABSTRACT

 

A study was conducted to optimize the extraction conditions for total phenolic contents (TPC) of star fruit residues using response surface methodology (RSM). By using Design Expert (Version 6.0.10, Stat-Ease Inc., Minneapolis) statistical software, a five-level, three-factor central composite rotatable design (CCRD) was employed to investigate the effects of three independent variables including solvent concentration, X1 (40-80%), extraction temperature, X2 (25-55°C), and extraction time, X3 (90-270 min) on total phenolic content. These independent variables were coded at three levels and their natural values chosen according to preliminary experimental results. In single factor experiments, 60% acetone, 180 minutes extraction time and 40°C extraction temperature were set as center points due to their highest TPC value, which were 2366.71, 2436.03, and 2510.95 mg GAE/100 g dry weight (DW) of star fruit residues, respectively. The results showed that the acetone concentration was statistically the most significant factor (p<0.01) and the optimal extraction conditions obtained were: acetone concentration, 65.34%; extraction temperature, 43.18°C; and extraction time, 233.51 min. Under the above-mentioned conditions, the experimental TPC was 965.65 ± 30.87mg GAE/100 g DW, which was well matched with the predicted value, 965.52 mg GAE/100 g DW.

 

Keywords: Central composite rotatable design; response surface methodology; total phenolic compounds; star fruit residues

 

 

 

ABSTRAK

 

Kajian ini dijalankan untuk mengoptimumkan parameter pengekstrakan jumlah sebatian fenolik daripada residu belimbing menggunakan Kaedah Permukaan Respons (RSM). Lima tahap, tiga faktor reka bentuk komposit putaran tengah (RKPT) digunakan untuk mengkaji kesan tiga faktor iaitu kepekatan pelarut, X1 (40-80%), suhu pengekstrakan, X2 (25-55°C) dan masa pengekstrakan, X3 (90-270 min) terhadap jumlah sebatian fenolik. Nilai ketiga-tiga faktor pengekstrakan ini dipilih berdasarkan kepada keputusan  ujikaji awalan. Dalam ujikaji faktor individu, aseton berkepekatan 60%, 180 min masa pengekstrakan dan 40°C suhu pengekstrakan ditetapkan sebagai titik tengah disebabkan oleh perolehan nilai jumlah sebatian fenolik yang tertinggi iaitu 2366.71, 2436.03, dan 2510.95 mg GAE/100 g berat kering (BK) daripada residual belimbing. Dari segi statistik, keputusan ini menunjukkan bahawa kepekatan aseton merupakan faktor yang paling signifikan (p<0.01) dan keadaan optimum pengekstrakan diperolehi ialah: kepekatan aseton, 63.54%; suhu pengekstrakan,43.18°C dan masa pengekstrakan, 233.51 min. Ujian pengesahan pada keadaan optimum tersebut menunjukkan jumlah sebatian fenolik ialah 965.65 ± 30.87 mg GAE/100 g berat kering (BK) sepadan dengan nilai dijangka iaitu 965.52 mg GAE/100 g berat kering (BK).

 

Kata kunci: Jumlah sebatian fenolik; kaedah respon permukaan; rekabentuk komposit putaran tengah; residu belimbing 

 

REFERENCES

 

Abdalla, A.E.M., Darwish, S.M., Ayad, E.H.E. & Hamahmy, R. M.E. 2007. Egyptian mango by-product 2: Antioxidant and antimicrobial activities of extract and oil from mango seed kernel. Food Chemistry 103: 1141-115.

Alasalvar, C., Karamac, M., Amarowicz, R. & Shahidi, F. 2006. Antioxidant and antiradical activities in extracts of hazelnut kernel (Corylus avellana L.) and hazelnut green leafy cover. Journal of Agricultural and Food Chemistry 54: 4826-4932.

Anon. 2007. Waste management conference and exhibition 2007 organised by Ensearch Sunway Pyramid.<http://aplikasi.kpkt. gov.my/ucapan.nsf/8521d968204e8b454825697400224ca 6/9361ab79426398a74825737d00291643?OpenDocument [Accessed 24 January 2008]

Balasundram, N., Sundram, K. & Samman, S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99: 191-203.

Chethan, S. & Malleshi, N.G. 2007. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chemistry 105: 862-870.

Liu, Q. & Yao, H.Y., 2007. Antioxidant activities of barley seeds extracts. Food Chemistry 102: 732-737.

Makris, D.P., Boskou, G. & Rikopoulos, N.K. 2007. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis 20: 125-132.

Mane, C., Souquet, J.M., Olle, D., verries, C., veran, F., Mazerolles, G., Cheynier, v. & Fulcrand, H. 2007. Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: Application to the characterization of champagne grape varieties. Journal of Agricultural and Food Chemistry 55: 7224-7233.

Okonogi, S., Duangrat, C., Anuchpreeda, S., Tachakittirungrod, S. & Chowwanapoonpohn, S. 2007. Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chemistry 103: 839-846.

Pathirana, C. L. & Shahidi, F. 2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry 93: 47-56.

Peschel, W., Rabaneda, F.S., Diekmann, W., Plescher, A., Gartzia, I., Jimenez, D., Raventos, R.L., Buxaderas, S. & Codina, C. 2006. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chemistry 97: 137-150.

Rodrigues, S., Pinto, G.A.S. & Fernandes, F.A.N. 2008. Optimization of untrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrasound Sonochemistry 15: 95- 100.

Shui, G.H. & Leong, L.P. 2004. Analysis of polyphenolic antioxidants in star fruit using liquid chromatography and mass spectrometry. Journal of Chromatography A 1022: 67-75.

Shui, G.H. & Leong, L.P., 2006. Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chemistry 97: 277-284.

Silva, E.M., Rogez, H. & Larondelle, Y. 2007. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology 55: 381-38.

Solomons, T.W.G. 1994. Fundamentals of Organic Chemistry. 4th Ed. United State of America: Wiley.

Spigno, G. & Faveri, D.M.D. 2007. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. Journal of Food Engineering 78: 793-801.

ven, C.v.D., Gruppen, H., Bont, D.B.A. & voragen, A.G.J. 2002. Optimization of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. International Dairy Journal 12: 813-820.

Wang, J., Sun, B., Cao, Y.P., Tian, Y. & Li, X.H. 2008. Optimization of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry 106: 804-810.

Zhang, Z.S., Li, D., Wang, L.J., Ozkan, N., Chen, X.D., Mao, Z.H. & Yang, H.Z. 2007. Optimization of ethanol-water extraction of lignans from flaxseed. Separation and Purification Technology 57: 17-24.

 

*Corresponding author; email: cwho@ucsi.edu.my

 

previous