Sains Malaysiana 38(4)(2009): 567–575 

 

 

Financial Risk Evaluations in Malaysian Stock Exchange using  Extreme-Value-Theory and Component-ARCH Model

(Penilai Risiko Kewangan Bursa Saham Malaysia dengan Penggunaan

Teori-Nilai-Melampau dan Model Komponen-ARCH)

 

Chin Wen Cheong*

Faculty of Information Technology

Multimedia University, 63100 Cyberjaya, Selangor D.E., Malaysia

 

Zaidi Isa

Faculty of Science and Technology

Universiti Kebangsaan Malaysia 43600 Bangi, Selangor D.E., Malaysia

 

Abu Hassan Shaari Mohd Nor

Faculty of Economics and Business, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor D.E., Malaysia

 

Received: 11 August 2008 / Accepted: 16 September 2008

 

ABSTRACT

 

This study investigates the value-at-risk (VaR) using nonlinear time-varying volatility (ARCH model) and extreme- value-theory (EVT) methodologies. Similar VaR estimation and prediction are observes under the EVT and heavy-tailed long-memory ARCH approaches. The empirical results evidence the EVT-based VaR are more accurate but only at higher quantiles. It is also found that EVT approach is able to provide a convenient framework for asymmetric properties in both the lower and upper tails which implies that the risk and reward are not equally likely for the short- and long-trading positions in Malaysian stock market.

 

Keywords: ARCH; heavy-tail distribution; long-persistence volatility; value-at-risk

 

ABSTRAK

 

Kajian ini dijalankan untuk menentukan value-at-risk (VaR) dengan menggunakan model ARCH dan model teori-nilai- melampau (EVT). Keserupaan nilai-nilai pengganggaran dan peramalan dicerap di bawah kedua-dua metodologi tersebut. Keputusan empirik mendapati VaR berdasarkan EVT adalah lebih tepat tetapi hanya pada kuantil yang tinggi. Adalah juga didapati pendekatan EVT berkebolehan menyediakan satu kerangka yang sesuai bagi menangani asimetrik di kedua-dua taburan hujung di mana risiko dan ganjaran adalah tidak setara bagi posisi perdagangan jangka pendek dan panjang di bursa saham Malaysia.

 

Kata kunci: ARCH; kesan kegigihan kemeruapan; taburan hujung berat; value-at-risk

 

REFERENCE

 

Abu Hassan, S.M.N. & Cheong, C.W. 2006. Long memory and asymmetric volatility behaviour of the Malaysian stock market: a statistical modelling approach. Sains Malaysiana 35: 67-73.

Baillie, R.T., Bollerslev, T. & Mikkelsen, H.O. 1996. Fractionally integrated autoregressive conditional heteroscedasticity. Journal of Econometrics 74: 3-30.

Barndorff-Nielsen, O.E. 1997. Normal inverse Gaussian distributions and the modelling of stock returns. Scandinavian Journal of Statistics 24: 1-13.

Bollerslev, T. 1987. A conditional heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics 69: 542-547.

Brooks, R. 2007. Power arch modelling of the volatility of emerging equity markets. Emerging Markets Review 8: 124-133.

Cajueiro, D.O. & Tabak, B.M. 2005. Ranking efficiency for emerging market II. Chaos, Solitons & Fractals 23: 671- 675.

Cheong, C.W., Abu Hassan, S.M.N. & Zaidi, I. 2006. An empirical study of volatility spillovers across the Malaysian stock indices. Asian-studies Monthly, Asian-studies Full-text online.

Cheong, C.W., Abu Hassan, S.M.N. & Zaidi, I. 2007. Asymmetry and long memory volatility: some empirical evidence using GARCH. Physica A 337: 651-664.

Ding Z. & Granger, C.W.J. 1996. Modeling volatility persistence of speculative returns: a new approach. Journal of Econometrics 73: 185-215.

Ding, Z., Granger, C.W.J. & Engle, R.F. 1993. A Long Memory Property of Stock Market Returns and a New Model. Journal of Empirical Finance 1: 83-106.

Da Silva, A.L.C. & De Melo Mendes, B.V. 2003. Value-at-risk an extreme returns in Asain stock markets. International Journal of Business 8: 17-40.

Embrechts, P., Resnick, S. & Samorodnitsky, G. 1999. Extreme value theory as a risk management tool. North American Actuarial Journal 3: 30-41.

Engle, R.F. & Lee, G.G.J. 1999. A long-run and sort-run component model of stock return volatility. In cointegration, causality and forecasting, Engle & White(eds.). Oxford: Oxford University Press.

Engle, R.R. & Ng, V. 1993. Measuring and testing the impact of news on volatility. Journal of Finance 48: 1749-1778.

Fase, M. M. G. & Abma, R.C.N. 2003. Financial environment and economic growth in selected Asian countries. Journal of Asian Economics 14: 11-21.

Fernandez, V. 2004. Risk management under extreme events. International Review of Financial Analysis 14: 113-148.

Giot, P. & Laurent, S. 2004. Modelling daily Value-at-Risk using realized volatility and ARCH type models. Journal of Empirical Finance 11: 379-398.

Ho, L.C., Burridge, P., Cadle, J. & Theobald, M. 2000. Value-at- risk: applying the extreme value approach to Asian markets in the recent financial turmoil. Pacific-Basin Finance Journal 8: 249-275.

Hurst H.E. 1951. Long term storage capacity of reservoirs. Transaction of the American Society of Civil Engineers 116: 770-799.

Jorion, P. 1997. Value at Risk: The New Benchmark for Controlling Market Risk. The McGraw-hill Company: Chicago.

Khalid, A. M. & Kawai, M. 2003. Was financial market contagion the source of economic crisis in Asia? Evidence using a multivariate VAR model. Journal of Asian Economics 14: 131-156.

Kok, K.L. & Lee, F.F. 1994. Malaysian second board stock market and the efficient market hypothesis. Malaysian Journal of Economic Studies 31: 1-13.

Lim, K.P., Habibullah, M.S. & Lee, H.A. 2003. A BDS test of random walk in the Malaysian stock market. Labuan Bulletin of International Business and Finance 1: 29-39.

Longin, F. 2000. From Value-at-Risk to Stress testing: The Extreme Value Approach. Journal of Banking and Finance 24: 1097-1130.

Markowitz. H.M. 1959. Portfolio Selection: Efficient Diversification of Investments. New York: John Wiley & Sons.

McNeil A.J. 1999. Extreme value theory for risk managers. Internal Modelling CAD II, Risk Books: 93-113.

McNeil, A.J. 1998. Calculating quantile risk measures for financial return series using extreme value theory. Department of Mathematic, ETH, Zentrum, Zurich.

Miller M.H., Muthuswamy, J. & Whaley, R.E. 1994. Mean reversion of Standard and Poor 500 index basis changes:

Arbitrage-induced or statistical illusion? Journal of Finance 49: 479-513.Ding Z. & Granger, C.W.J. 1996. Modeling volatility persistence of speculative returns: a new approach. Journal of Econometrics 73: 185-215.

Ding, Z., Granger, C.W.J. & Engle, R.F. 1993. A Long Memory Property of Stock Market Returns and a New Model. Journal of Empirical Finance 1: 83-106.

Da Silva, A.L.C. & De Melo Mendes, B.V. 2003. Value-at-risk an extreme returns in Asain stock markets. International Journal of Business 8: 17-40.

Embrechts, P., Resnick, S. & Samorodnitsky, G. 1999. Extreme value theory as a risk management tool. North American Actuarial Journal 3: 30-41.

Engle, R.F. & Lee, G.G.J. 1999. A long-run and sort-run component model of stock return volatility. In cointegration, causality and forecasting, Engle & White(eds.). Oxford: Oxford University Press.

Engle, R.R. & Ng, V. 1993. Measuring and testing the impact of news on volatility. Journal of Finance 48: 1749-1778.

Fase, M. M. G. & Abma, R.C.N. 2003. Financial environment and economic growth in selected Asian countries. Journal of Asian Economics 14: 11-21.

Fernandez, V. 2004. Risk management under extreme events. International Review of Financial Analysis 14: 113-148.

Giot, P. & Laurent, S. 2004. Modelling daily Value-at-Risk using realized volatility and ARCH type models. Journal of Empirical Finance 11: 379-398.

Ho, L.C., Burridge, P., Cadle, J. & Theobald, M. 2000. Value-at- risk: applying the extreme value approach to Asian markets in the recent financial turmoil. Pacific-Basin Finance Journal 8: 249-275.

Hurst H.E. 1951. Long term storage capacity of reservoirs. Transaction of the American Society of Civil Engineers 116: 770-799.

Morgan J.P. 1996. RiskMetricsTM – Technical Document. New York.

Muller, U.A., Dacorogna, M.M. & Pictet, O.V. 1998. Heavy tails in high-frequency financial data. In. Adler, R.J., Feldman, R.E, Taqqu, M.S. (Eds.). Birkhauser, Boston: 55-77.

Nam, K., Pyun, C.S. & Kim S.W. 2003. Is asymmetric mean- reverting pattern in stock returns systematic? Evidence from Pacific-basin markets in the short-horizon. Journal of International Financial Markets, Institutions and Money 13: 481-502.

Pictet O.V., Dacorogna, M.M. & Muller, U.A. 1998. Hill, bootstrap and jackknife estimators for heavy tails. In: Taqqu, M.S. (Eds.), Birkhauser, Boston, 283-310.

Ramazan, G. & Faruk S. 2004. Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting 20: 287-303.

Samuel, K. & Saralees, N. 2000. Extreme Value Distributions: Theory and Applications. London: Imperial College Press.

So, M.K.P. & Yu, P.L.H. 2006. Empirical analysis of GARCH models in value at risk estimation. Journal of International Financial, Markets, Institutions and Money 16: 180-197.

Tse, Y. 1998. The conditional heteroscedasticity of the Yen- Dollar exchange rate. Journal of Applied Econometrics 193: 49-55.

Urrutia, J.L. 1995. Tests of random walk and market efficiency for Latin American emerging markets. Journal of Financial Research 18: 299-309.

Wu, P.T. & Shieh, S.J. 2007. Value-at-risk analysis for long- term interest rate futures: fat-tail and long memory in return innovations. Journal of Empirical Finance 14: 248-259.

 

  *Corresponding author; email: wcchin@mmu.edu.my

previous