Sains Malaysiana 38(5)(2009): 673–678
Magnetic, Electrical Transport and
Impedance Spectroscopy Studies
on Ti Substituted La0.67Sr0.33MnO3 Ceramics
(Kajian
Sifat Magnet, Angkutan Elektrik dan Spektroskopi Impedans Terhadap Seramik La0.67Sr0.33MnO3 Diganti Ti)
Z. Zalita*
School of Applied Physics
Faculty of Science and
Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E., Malaysia
S.A. Halim, K. P. Lim, Z.A.
Talib, Z. Hishamuddin & C.P. Walter
Department of Physics, Faculty
of Science
Universiti Putra Malaysia 43400 UPM Serdang, Selangor,
Malaysia
Received: 15 September 2008 / Accepted:
16 December 2008
ABSTRACT
La0.67Sr0.33Mn1-xTixO3 samples with x = 0.0, 0.2, 0.4 and 0.6 have been prepared using
the conventional solid-state reaction method. The structure, magnetic and
electrical transport properties as well as the impedance spectroscopy of the
samples were investigated. The powder XRD analysis showed that all samples were single phase with
rhombohedral perovskite structure. The magnetization curve suggests that the Ti
substituted samples exhibit weak ferromagnetic behaviour. The highest
magnetoresistance (MR) value was
obtained for sample x = 0.2 at temperature 200 K and field 1 T, which was
32.5%. Low field magnetoresistance (LFMR) effect was observed for the x = 0.0 sample. The metal-like
resistivity curve for the x = 0.0 sample was best fitted with ρ = ρo + ρ2T2 equation,
indicating the grain boundary effects and electron-electron scattering process
contribution. Semiconductor-like transport behaviour was observed for the Ti
substituted samples and can be fitted by variable range hopping (VRH) and small polaron hopping (SPH) mechanisms. The activation energy of the samples increased when
the Ti composition increased. An equivalent circuit was proposed for the
impedance plot with a series of two parallel RC circuits. The grain, grain boundary and electrode resistance
values increased with Ti composition due to the reduction of the Mn3+ / Mn4+ ratio.
Keywords:
Electrical transport; impedance spectroscopy; magnetoresistance
ABSTRAK
Sampel La0.67Sr0.33Mn1-xTixO3 dengan x = 0.0, 0.2, 0.4 dan 0.6 telah disediakan menggunakan
kaedah tindak balas keadaan pepejal yang konvensional. Struktur,
sifat magnet dan elektrik serta spektroskopi impedans bagi kesemua sampel telah
dikaji. Analisis corak XRD serbuk menunjukkan bahawa
kesemua sampel adalah sefasa dengan struktur perovskit rombohedral. Lengkung pemagnetan mencadangkan bahawa sampel dengan penggantian
Ti menunjukkan kelakuan feromagnetik yang lemah. Nilai magnetorintangan (MR) yang maksimum diperolehi bagi sampel dengan x = 0.2 pada suhu
200 K dan medan 1 T iaitu 32.5%. Magnetorintangan medan rendah (LFMR) diperolehi bagi sampel x = 0.0. Lengkung kerintangan seperti
logam bagi sampel x = 0.0 paling baik dipadankan dengan persamaan ρ = ρo + ρ2T2 yang
menunjukkan sumbangan kesan sempadan butiran dan proses penyerakan
elektron-elektron. Kelakuan angkutan seperti semikonduktor
telah diperhatikan untuk sampel-sampel yang diganti Ti dan dapat dipadankan
dengan mekanisma loncatan julat bolehubah (VRH) dan loncatan polaron
kecil (SPH). Tenaga pengaktifan sampel meningkat dengan kandungan Ti. Litar setara telah dicadangkan bagi plot impedans dengan siri dua litar RC yang selari. Nilai-nilai rintangan butiran,
sempadan butiran dan elektrod meningkat dengan kandungan Ti disebabkan oleh
pengurangan nisbah Mn3+ /
Mn4+.
Kata kunci:
Angkutan elektrik; magnetorintangan; spektroskopi impedans
REFERENCES
Ang, R.,
Sun, Y.P., Zhu, X.B. & Song, W.H. 2006. Influence of Te doping on the perovskite manganite La0.5Ca0.5MnO3. Solid State Commun. 138: 505-510.
Blasco, J., Garcia, J., Teresa,
J.M., Ibarra, M.R., Algarabel P.A. & Marquina, C. 1996. A systematic study
of structural, magnetic and electrical properties of (La1-xTbx)2/3Ca1/3MnO3 perovskites. J. Phys.: Condens. Matter 8: 7427-7422.
Behera, B.,
Nayak, P. & Choudhary, R.N.P. 2007. Impedance spectroscopy studies of NaBa2V5O15 ceramic. J. Alloys and Compound 436:
226-232.
Brahma, S.,
Choudhary, R.N.P. & Thakur, A.K. 2005. AC impedance analysis of LaLiMo2O8 electroceramics. Physica B 355: 188-201.
Dagotto,
E., Hotta, T. & Moreo, A. 2001. Colossal
magnetoresistant materials: The key role of phase separation. Phys. Rep. 344: 1-153.
Elliott, S.R. 1983. Physics of Amorphous Materials. London: Longman,
2912.
Hwang,
H.Y., Cheong, S.W, Ong, N.P. & Batlogg, B. 1996. Spin polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys.
Rev. Lett. 77: 2041-2044.
Jha, P.,
Rai, S., Ramanujachary, K.V., Lovland, S.E. & Ganguli, A.K. 2004. (La0.4Ba0.4Ca0.2)(Mn0.4Ti0.6)O3: A new titano-manganate with a high
dielectric constant and antiferromagnetic interactions. Solid State Chem.
177: 2881-2888.
Kallel, N., Frohlich, K., Pignard,
S., Oumezzine, M. & Vincent, H. 2005. Structure, magnetic
and magnetoresistive properties of La0.7Sr0.3Mn1-xSnxO3. J. Alloys and Compound 399:
20-26.
Li, X.H.,
Huang, Y.H., Yan, C.H., Wang Z.M. & Liao, C.S. 2002. Enhanced low field magnetoresistance in Mn substituted
nanocrystalline La0.7Sr0.3Mn0.9M0.1O3. J. Phys.: Condens. Matter 14:
L177-l183.
Millis,
A.J., Littlewood, P.B. & Shraiman, B.I. 1995. Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys.
Rev. Lett. 74: 5144-5147.
Mott, N.F.
& Davis, E.A. 1971. Electronic
Processes in Noncrystalline Materials. Oxford: Clarendon.
Venkataiah,
G., Krishna, D.C., Mital, M., Rao, S.S., Bhat, S.V., Prasad, V., Subramanyam,
S.V. & Reddy, P.V. 2005. Effect of sintering temperature on electrical transport properties
of La0.67Ca0.33MnO3. Physica B 357: 370-379.
Zener, C.
1951. Interaction
between d-shells in the transition metals. ii ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82: 403-405.
*Corresponding author; email:
zalizai69@gmail.com
|