Sains Malaysiana 38(5)(2009): 693–698
Optimisation of N-Channel Trench Power MOSFET
Using 2k Factorial Design Method
(Pengoptimuman MOSFET Kuasa Parit Salur-N
Menggunakan Kaedah Reka Bentuk Pemfaktoran 2k)
Nur Syakimah Binti Ismail*
Pusat Pengajian Kejuruteraan
Mikroelektronik
Blok A, Pusat Pengajian Jejawi 1
Universiti Malaysia Perlis, 02600
Jejawi, Perlis
Ibrahim Ahmad
Electronics & Communication
Engineering Department
College of Engineering, Universiti
Tenaga Nasional
Km 7, Jalan Kajang-Puchong, 43009
Kajang, Selangor.
Hafizah Husain
Jabatan Kejuruteraan Elektrik,
Elektronik & Sistem
Fakulti Kejuruteraan, Universiti
Kebangsaan Malaysia
43600 UKM Bangi,
Selangor D.E., Malaysia
Received: 29 August 2008 / Accepted:
26 December 2008
ABSTRACT
The main objective of this research is to optimize the trench
depth, trench width, epitaxial resistivity and epitaxial thickness in trench
power MOSFET so as to obtain high breakdown voltage
but low on-resistance. Optimisation of these parameters are based on 2k factorial design method for achieving
specific on-resistance 0.1 mΩcm2 and blocking voltage higher than 30 V. ATHENA and ATLAS software from Silvaco Int. were used for fabrication simulation
and device electrical characterisation. The results obtained were, the
optimisation value for trench width was 1.25 μm, trench depth was 1.25
μm, epitaxial thickness was 4.75 μm and epitaxial resistivity was
0.32 Ωcm. The predictive value of breakdown voltage was 39.41 V and
significant to factors trench depth, epitaxial thickness and epitaxial
resistivity. The predictive value for on-resistance was 0.105 mΩcm2 with significant to factors trench
depth, epitaxial thickness and epitaxial resistivity. In conclusion, 2k factorial design method is successfully
utilised in optimizing n-channel trench power MOSFET.
Keywords: 2k Factorial
design method; optimisation; trench power MOSFET
ABSTRAK
Tujuan utama kajian ini dijalankan adalah untuk mengoptimumkan
kedalaman parit, kelebaran parit, keberintangan epitaksi dan ketebalan epitaksi
dalam MOSFET kuasa parit bagi mendapatkan kejatuhan
voltan tinggi manakala rintangan-buka rendah. Pengoptimuman kedalaman parit,
kelebaran parit, keberintangan epitaksi dan ketebalan epitaksi dilakukan
berdasarkan kaedah reka bentuk pemfaktoran 2k untuk mendapatkan rintangan-buka tertentu 0.1 mΩcm2 dan voltan penahanan lebih tinggi
daripada 30 V. Simulator ATHENA dan ATLAS daripada Silvaco Int. telah digunakan
untuk membuat simulasi fabrikasi dan pencirian elektrik bagi peranti. Keputusan
yang diperoleh adalah, nilai pengoptimuman bagi kelebaran parit ialah 1.25
μm, kedalaman parit ialah 1.25 μm, ketebalan epitaksi ialah 4.75
μm dan keberintangan epitaksi ialah 0.32 Ωcm. Nilai jangkaan bagi
kejatuhan voltan ialah 39.41 V dan signifikan terhadap faktor kedalaman parit,
ketebalan epitaksi dan keberintangan epitaksi. Nilai jangkaan bagi
rintangan-buka ialah 0.105 mΩcm2 dan signifikan terhadap faktor kedalaman parit, ketebalan
epitaksi dan keberintangan epitaksi. Kesimpulannya, kaedah reka bentuk pemfaktoran
2k telah berjaya digunakan untuk
mengoptimumkan salur-n transistor parit kuasa MOSFET.
Kata kunci: Kaedah reka bentuk pemfaktoran 2k; MOSFET kuasa parit; pengoptimuman
REFERENCES
Bai, Y. 2003. Optimization of Power MOSFET for High-Frequency
Synchronous Buck Converter. PhD. Diss. Virginia Polytechnic Institute and State
University.
Baliga, B.J. 1996. Power Semiconductor Devices. Boston:
PWS Publishing Company.
Baliga, B.J. 2001. The future of power semiconductor device
technology. Proceedings of IEEE 89(6): 822-832.
Brown, J. & Moxey, G. 2002. Power MOSFET Basics:
Understanding MOSFET Characteristics Associated With the Figure of Merit. AN605 Vishay Siliconix.
Costa, C.B.B., Rivera, E.A.C., Rezende, M.C.A.F., Maciel, M.R.W.
& Filho, R.M. 2007. Prior detection of genetic algorithm significant
parameters: Coupling factorial design technique to genetic algorithm. Chemical
Engineering Science 62: 4780-4801.
Craig, A. 2004. Exploring Avalanche Capability, Failure in
Trench Power MOSFET. Nikkei Electronic Asia: ms.
Hong, J.H., Chung, S.K. & Choi, Y.I. 2004. Optimum design
for minimum on-resistance of low voltage trench power MOSFET. Microelectronics
Journal 35: 287-289.
Juang, M.H., Chen, W.T., Ou-Yang, C.I., Jang, S.L., Lin, M.J.
& Cheng, H.C. 2004. Fabrication of trench-gate power MOSFETs by using a
dual doped body region. Solid-State Electronics 48: 1079-1085.
Korec, J., Darwish, M.N. & Pitzer, D.C. 2003. Method of
Fabricating Trench-Gated Power MOSFET. United States Patent, 6534366.
Montgomery, D.C. 2001. Design and Analysis of Experiment.
Ed. Ke-5. New York: John Wiley & Sons Inc.
Oh, K.S. 2000. MOSFETs Basics. Fairchild Semiconductor
Application Note AN9010 Rev D. 1-36.
Sun, S.C. & Plummer, J.D. 1980. Modeling of the
on-resistance of LDMOS, VDMOS and VMOS power transistors. IEEE Trans on
Electron Devices 27(2): 356-367.
Syau, T., Venkatraman, P. & Baliga, B.J. 1994. Comparison of
ultra specific on-resistance UMOSFET structures: The ACCUFET, EXTFET, INVFET
and conventional UMOSFET’s. IEEE Trans on Electron Devices 40: 800-808.
Tolksdorf, C., Fink, C., Schulze, J., Sedlmaier, S., Hansch, W.,
Werner, W., Kanert, W. & Eisele, I. 2002. The vertical concept of power
MOSFETs. Material Science and Engineering B89: 439-443.
*Corresponding author; email: syakimah@unimap.edu.my
|