Sains
Malaysiana 38(5)(2009): 717–721
Direct Solution of Second-order BVPs by
Homotopy-perturbation Method
(Penyelesaian
Secara Langsung MNS Berperingkat-Dua Melalui Kaedah Homotopi-usikan)
O. Abdulaziz1, M.S.H. Chowdhury2, I. Hashim1*
& S. Momani3
1Centre for Modelling & Data Analysis
School of Mathematical
Sciences, Universiti Kebangsaan Malaysia
43600 UKM Bangi Selangor D.E., Malaysia
2Faculty of Engineering
International Islamic
University Malaysia
Jalan Gombak, 53100 Kuala
Lumpur, Malaysia
3Department of Mathematics
Mutah University, P.O. Box 7,
Al-Karak, Jordan
Received: 20 June 2008 / Accepted:
20 November 2008
ABSTRACT
In this
paper, systems of second-order boundary value problems (BVPs) are considered. The applicability of the homotopy-perturbation
method (HPM) was extended to obtain exact
solutions of the BVPs directly.
Keywords:
Boundary value problems; homotopy-perturbation method
ABSTRAK
Dalam
makalah ini, sistem masalah nilai sempadan (MNS) berperingkat dua dipertimbangkan. Kegunaan
kaedah homotopi-usikan (KHU) diperluaskan bagi memperoleh penyelesaian tepat MNS tersebut secara langsung.
Kata kunci:
Kaedah homotopi-usikan; masalah nilai sempadan
REFERENCES
Abbasbandy, S. 2007a. A numerical solution of Blasius equation by Adomian’s decomposition
method and comparison with homotopy perturbation method. Chaos
Solitons Fractals 31: 257-260.
Abbasbandy, S. 2007b. Application of
He’s homotopy perturbation method to functional integral equations. Chaos
Solitons Fractals 31: 1243-1247.
Abdulaziz, O., Hashim, I. &
Momani, S. 2008. Application of homotopy-perturbation method
to fractional IVPs. J. Comput. Appl. Math. 216: 574-584.
Abdulaziz,
O., Hashim, I. & Ismail, E.S. 2009. Approximate analytical solution to fractional modified KdV equations. Mathl. Comput. Model. 49: 136-145.
Chen, S.H.,
Hu, J., Chen, L. & Wang, C.P. 2005. Existence results for η-point boundary value problem of second order
ordinary differential equations. J. Comput. Appl. Math. 180: 425-432.
Cheng, X.Y.
& Zhong, C.K. 2005. Existence
of positive solutions for a second order ordinary differential system. J.
Math. Anal. Appl. 312: 14-23.
Chowdhury,
M.S.H. & Hashim, I. 2007a. Solutions of a class of singular second-order IVPs by
homotopy-perturbation method. Phys. Lett. A 365: 439-447.
Chowdhury,
M.S.H. & Hashim, I. 2007b. Solutions
of time-dependent Emden-Fowler type equations by homotopy-perturbation method, Phys.
Lett. A 368: 305-313.
Chowdhury,
M.S.H. & Hashim, I., Abdulaziz, O. 2007. Application of homotopy-perturbation method
to nonlinear population dynamics models. Phys. Lett. A 368:
251-258.
Dehghan, M.
& Saadatmandi, A. 2007. The numerical solution of a nonlinear system of second-order
boundary value problems using the sinc-collocation method, Mathl. Comput. Model. 46:
1434-1441.
Geng, F.Z.
& Cui, M.G. 2007. Solving a
nonlinear system of second order boundary value problems. J. Math. Anal. Appl. 327: 1167-1181.
He, J.H.
1999. Homotopy
perturbation technique, Computer Meth. Appl. Mech. Eng. 178:
257-262.
He, J.H.
2000. A coupling method
of a homotopy technique and a perturbation technique for non-linear problems. Intern. J. Nonlin. Mech. 35: 37-43.
He, J.H.
2006. Homotopy
perturbation method for solving boundary value problems. Phys. Lett.
A 350: 87-88.
Lomtatidze,
A. & Malaguti, L. 2003. On a
two-point boundary value problem for the second order ordinary differential equations
with singularities, Nonlinear Anal. 52: 1553-1567.
Lu, J.F.
2007. Variational
iteration method for solving a nonlinear system of second-order boundary value
problems. Comput. Math. Appl. 54: 1133-1138.
Mawhin, J.
& Tisdell, C. 2003. A note on the uniqueness of
solutions to nonlinear, discrete, vector boundary value problems. Nonlinear Anal. Appl. 1: 789-798.
Odibat,
Z.M. 2007. A new modifcation
of the homotopy perturbation method for linear and nonlinear operators. Appl.
Math. Comput. 189: 746-753.
Saadatmandi,
A., Dehghan, M. & Eftekhari, A. 2009. Application of He’s homotopy perturbation method for non-linear system of
second-order boundary value problems. Nonlin. Analy.: Real World Appl. 10: 1912-1922.
Thompson,
H.B. & Tisdell, C. 2000. Systems of
difference equations associated with boundary value problems for second order
systems of ordinary differential equations. J. Math. Anal. Appl. 248: 333-347.
Thompson,
H.B. & Tisdell, C. 2002. Boundary
value problems for systems of difference equations associated with systems of
second-order ordinary differential equations. Appl. Math. Lett. 15(6): 761-766.
Yusufoglu,
E. 2007. Homotopy
perturbation method for solving a nonlinear system of second order boundary
value problem, Int. J. Nonlin. Sci. Numer. Simul. 8: 353-358.
*Corresponding author; email:
ishak_h@ukm.my
|