Sains Malaysiana 38(5)(2009): 785–791

 

Pengembungan Hidrogel Selulosa Bakteria-Asid Akrilik:

Sensitiviti  Terhadap Rangsangan Luar

(Swelling of Bacterial Cellulose-Acrylic Acid Hydrogels: Sensitivity Towards External Stimuli)

 

 

Nadia Halib1, Mohd Cairul Iqbal Mohd Amin2*, Ishak Ahmad3,

Zulkifli Mohamed Hashim1 & Noriah Jamal1

 

1Bahagian Teknologi Perubatan, Agensi Nuklear Malaysia

Bangi, 43000 Kajang, Selangor, Malaysia

 

2Fakulti Farmasi, Universiti Kebangsaan Malaysia

Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

 

3Pusat Pengajian Sains Kimia dan Teknologi Makanan

Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 UKM, Bangi, Selangor, Malaysia

 

Received: 15 July 2008 / Accepted: 14 January 2009

 

ABSTRAK

 

Kajian ini telah menilai kesan pelbagai faktor persekitaran terhadap darjah pengembungan hidrogel selulosa bakteria-asid akrilik. Campuran akues selulosa bakteria-asid akrilik (4:1) telah disediakan dan didedahkan dengan irradiasi alur elektron pada 35 kGy dan 50 kGy. Kadar pengembungan di bawah pengaruh pH, suhu dan kekuatan ionik telah dikaji dari 1 hingga 24 jam. Darjah pengembungan hidrogel bergantung kepada dos irradiasi yang diberi: hidrogel yang telah disintesis pada 50 kGy mempunyai darjah pengembungan yang lebih tinggi secara signifikan (p<0.0001) dalam metanol (619%) berbanding air suling (510%) pada suhu bilik selepas 24 jam. Kekuatan ionik persekitaran mempengaruhi dengan peningkatan kepekatan natrium klorida menurunkan darjah pengembungan. Hidrogel juga peka terhadap perubahan pH: pengembungan meningkat dengan peningkatan pH dan nilai optimal dicapai pada pH 7. Selain itu pengembungan juga meningkat dengan peningkatan suhu dari 25¡C sehingga 50¡C. Kesimpulannya, keupayaan hidrogel selulosa bakteria-asid akrilik dedahan irradiasi elektron bertindak balas terhadap pelbagai rangsangan faktor persekitaran, menjadikan ia satu bahan yang boleh dibangunkan sebagai sistem penyampaian aktif untuk dadah, protein dan hormon.

 

Kata kunci: Faktor luaran; hidrogel; selulosa bakteria; sistem penyampaian

 

ABSTRACT

 

This study evaluated various environmental factors affecting the swelling degree of bacterial cellulose-acrylic acid hydrogels. Aqueous bacterial cellulose-acrylic acid (4:1) mixtures were prepared and subjected to electron beam irradiation at 30 and 50 kGy. Swelling rate under influenced of pH, temperature and ionic strength was investigated from 1 to 24 hours. Swelling degree of hydrogels was dependent on irradiation dose: those synthesized at 50 kGy exhibited significant higher swelling degree (p<0.0001) in methanol (619%) compared to water (510%) at room temperature after 24 hours. External ionic strength affected swelling, i.e, elevation in sodium chloride concentration decreased swelling degree. Hydrogels were also sensitive to pH: swelling increased with increasing pH and was optimal at pH 7. Swelling also increased with increasing temperature from 25¡C to 50¡C. In conclusion, the ability of electron irradiated bacterial cellulose-acrylic acid hydrogels to respond to various external environment make it a material to be developed as an active delivery system for drugs, proteins and hormones.

 

Keywords: Bacterial cellulose; delivery systems; external stimuli; hydrogels

 

REFERENCES

 

Abd Alla, S.G., Nizam El-Din, H.M. & El-Naggar, A.W.M. 2007. Structure and swelling release behaviour of poly (vinyl pyrrolidone) (PVP) and acrylic acid (Aac) copolymer hydrogels prepared by gamma irradiation. European Polymer Journal 43: 2987-2998.

Benamer, S., Mahlous, M., Boukrif, A., Mansouri, B. & Youcef, S.L. 2006. Synthesis and characterization of hydrogels based on poly (vinyl pyrrolidone). Nuclear Instruments and Methods in Physics Research (B) Beam Interaction with Materials & Atoms 248: 284-290.

Bromberg, L., Temchenko, M., Alakhov, V. & Alan Hatton, T. 2004. Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels. International Journal of Pharmaceutics 282: 45-60.

Carenza, M., Caliceti, P., Veronese, F.M., Martellini, F., Higa, O.Z., Yoshida, M. & Katakai, R. 2000. Poly(acryloyl-L-proline methyl ester) hydrogels obtained by radiation polymerization for the controlled release of drugs. Radiation Physics and Chemistry 57: 471-475.

Clough, R.L. 2001. High-energy radiation and polymers: A review of commercial processes and emerging applications. Nuclear Instruments and Methods in Physics Research (B) Beam Interaction with Materials & Atoms 185: 8-33.

da Silva, R. & Ganzarolli de Oliveira, M. 2007. Effect of the cross-linking density on the morphology of poly(NIPAAm-co-Aac) hydrogels. Polymer 48: 4114-4122.

El-Naggar, A.W.M., Abd Alla, S.G. & Said, H.M. 2006. Temperature and pH responsive behavior of CMC/AAc hydrogels prepared by electron beam irradiation. Material Chemistry and Physics 95: 158-163.

Fechine, G.J.M., Barros, J.A.G. & Catalani, L.H. 2004. Poly (n-vinyl-2-pyrrolidone) hydrogels production by ultraviolet radiation : new methodologies to accelerate crosslinking. Polymer 45: 4705-4709.

Karlsson, J.O. & Gatenholm, P. 1997. Preparation and characterization of cellulose-supported HEMA hydrogels. Polymer 38(18): 4727-4731.

Kei, W., Millon, L. 2005. Polyvinyl alcohol bacterial cellulose nanocomposite. Freepatentsonline. http://www.freepatentsonline.com/20050037082.html

Knolle, W., Mehnert, R. 1995. Primary reaction in the electron induced polymerization of acrylates. Nuclear Instruments and Methods in Physics Research (B) Beam Interaction with Materials & Atoms 105: 154-158

Kubota, H., Shiobara, N. 1998. Photografting of N-isopropylacrylamide on cellulose and temperature-responsive character of the resulting grafted cellulose. Reactive & Functional Polymers 37: 219-224.

Liu, P., Zhai, M., Li, J., Peng, J., Wu, J. 2002. Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiation Physics and Chemistry 63: 525-528.

LopŽrgolo, L.C., Catalani, L.H., Machado, L.D.B., Rela, P.R., & Lugao, A.B. 2000. Development of reinforced hydrogels – I. Radiation induced graft copolymerization of methylmethacrylate on non-woven polypropylene fabric. Radiation Physics and Chemistry 57: 451-454.

LopŽrgolo, L.C., Lug‹o, A.B. & Catalani, L.H. 2003. Direct UV photocrosslinking of poly (N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer 44: 6217-6222.

Miyajima, M., Yoshida, M., Sato, H., Omichi, H., Katakai, R. & Higuchi, W.I. 1995. Release control of 9-§-D-arabinofuranosyladenine from thermo-responsive gels. Radiation Physics and Chemistry 46(2): 199-201.

Mondino, A.V., Gonzalez, M.E., Romero, G.R. & Smolko, E.E. 1999. Physical properties of gamma irradiated poly(vinyl alcohol) hydrogel preparations. Radiation Physics and Chemistry 55: 723-726.

Nagasawa, N., Yagi, T., Kume, T. & Yoshii, F. 2004. Radiation crosslinking of carboxymethyl starch. Carbohydrate Polymers 58: 109-113.

Panda, A., Manohar, S.B., Sabharwal, S., Bhardwaj, Y.K. & Majali, A.B. 2000. Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation. Radiation Physics and Chemistry 58(1) : 101-110.

Pekel, N., Sahiner, N. & Guven, O. 2000. Development of new chelating hydrogels based on N-vinyl amidazole and acrylonitrile. Radiation Physics and Chemistry 59(5-6): 485-491.

Pekel, N., Yoshii, F., Kume, T. & Guven, O. 2004. Radiation crosslinking of biodegradable hydroxypropylmethylcellulose. Carbohydrate Polymers 55: 139-147.

Safrany, A. 1997. Radiation processing: Synthesis and modification of biomaterials for medical use. Nuclear Instruments and Methods in Physics Research (B) Beam Interaction with Materials & Atoms 131: 376-381.

Said, H.M., Abd Alla, S.G. & El-Naggar, A.W.M. 2004. Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. Reactive & Functional Polymers 61: 397-404.

Scherzer, T., Beckert, A., Langguth, H., Rummel, S. & Mehnert, R. 1997. Electron beam curing of methacrylated gelatin. I. Dependence of the degree of crosslinking on the irradiation dose. Journal of Applied Polymer Science 63: 1303-1312.

Strauss, P., Knolle, W. & Naumov, S. 1998. Radiation-induced radical formation and crosslinking in aqueous solutions of N-isopropylacrylamide. Macromolecular Chemistry and Physics 199: 2229-2235.

Tamburic, S. & Craig, D.Q.M. 1995. An investigation into the rheological, dielectric and mucoadhesive properties of poly (acrylic acid) gel systems. Journal of Controlled Release 37: 59-68.

Trieu, H. & Qutubuddin, S. 1995. Poly (vinyl alcohol) hydrogels: 2. Effects of processing parameters on structure and properties. Polymer 36(13): 2531-2539.

Varshney, L. 2007. Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing. Nuclear Instruments and Methods in Physics Research (B) Beam Interaction with Materials & Atoms. 225: 343-349.

Wach, R.A., Mitomo, H., Nagasawa, N. & Yoshii, F. 2003. Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions. Nuclear Instruments and Methods in Physics Research (B) Beam Interaction with Materials & Atoms 211: 533-544.

Yetimoglu, E.K., Kahraman, M.V., Ercan, …., Akdemir, Z.S. & Apohan, N.K. 2007. N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-2methylpropane sulfonic acid based hydrogels: Synthesis, characterization and their application in the removal of heavy metal. Reactive & Functional Polymers 67: 451-460.

Yoshii, F., Zhao, L., Wach, R.A., Nagasawa, N., Mitomo, H. & Kume, T. 2003. Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition. Nuclear Instruments and Methods in Physics Research (B) Beam Interactions with Materials & Atoms 208: 320-324.

Yoshii, F., Makuuchi, K., Darwis, D., Iriawan, T., Razzak, M.T. & Rosiak, J.M. 1995. Heat resistance poly(vinyl alcohol) hydrogel. Radiation Physics and Chemistry 46(2): 169-174.

 

*Corresponding author; email: mciamin@pharmacy.ukm.my

previous