Sains
Malaysiana 38(5)(2009): 785–791
Pengembungan Hidrogel Selulosa
Bakteria-Asid Akrilik:
Sensitiviti Terhadap
Rangsangan Luar
(Swelling
of Bacterial Cellulose-Acrylic Acid Hydrogels: Sensitivity Towards External
Stimuli)
Nadia Halib1, Mohd Cairul Iqbal Mohd Amin2*, Ishak Ahmad3,
Zulkifli Mohamed Hashim1 & Noriah Jamal1
1Bahagian Teknologi Perubatan, Agensi Nuklear Malaysia
Bangi, 43000 Kajang, Selangor, Malaysia
2Fakulti Farmasi, Universiti Kebangsaan Malaysia
Jalan Raja Muda Abdul Aziz, 50300 Kuala
Lumpur, Malaysia
3Pusat Pengajian Sains Kimia dan Teknologi Makanan
Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia
43600 UKM, Bangi, Selangor, Malaysia
Received: 15 July 2008 / Accepted: 14
January 2009
ABSTRAK
Kajian ini
telah menilai kesan pelbagai faktor persekitaran terhadap darjah pengembungan
hidrogel selulosa bakteria-asid akrilik. Campuran akues selulosa bakteria-asid
akrilik (4:1) telah disediakan dan didedahkan dengan irradiasi alur elektron
pada 35 kGy dan 50 kGy. Kadar pengembungan di bawah pengaruh pH, suhu dan
kekuatan ionik telah dikaji dari 1 hingga 24 jam. Darjah pengembungan hidrogel
bergantung kepada dos irradiasi yang diberi: hidrogel yang telah disintesis
pada 50 kGy mempunyai darjah pengembungan yang lebih tinggi secara signifikan
(p<0.0001) dalam metanol (619%) berbanding air suling (510%) pada suhu bilik
selepas 24 jam. Kekuatan ionik persekitaran mempengaruhi dengan peningkatan
kepekatan natrium klorida menurunkan darjah pengembungan. Hidrogel juga peka
terhadap perubahan pH: pengembungan meningkat dengan peningkatan pH dan nilai
optimal dicapai pada pH 7. Selain itu pengembungan juga meningkat dengan
peningkatan suhu dari 25¡C sehingga 50¡C. Kesimpulannya, keupayaan hidrogel
selulosa bakteria-asid akrilik dedahan irradiasi elektron bertindak balas
terhadap pelbagai rangsangan faktor persekitaran, menjadikan ia satu bahan yang
boleh dibangunkan sebagai sistem penyampaian aktif untuk dadah, protein dan
hormon.
Kata kunci:
Faktor luaran; hidrogel; selulosa bakteria; sistem penyampaian
ABSTRACT
This study
evaluated various environmental factors affecting the swelling degree of
bacterial cellulose-acrylic acid hydrogels. Aqueous bacterial cellulose-acrylic
acid (4:1) mixtures were prepared and subjected to electron beam irradiation at
30 and 50 kGy. Swelling rate under influenced of pH, temperature and ionic
strength was investigated from 1 to 24 hours. Swelling degree of hydrogels was
dependent on irradiation dose: those synthesized at 50 kGy exhibited
significant higher swelling degree (p<0.0001) in methanol (619%) compared to
water (510%) at room temperature after 24 hours. External ionic strength
affected swelling, i.e, elevation in sodium chloride concentration decreased
swelling degree. Hydrogels were also sensitive to pH: swelling increased with
increasing pH and was optimal at pH 7. Swelling also increased with increasing
temperature from 25¡C to 50¡C. In conclusion, the ability of electron
irradiated bacterial cellulose-acrylic acid hydrogels to respond to various
external environment make it a material to be developed as an active delivery
system for drugs, proteins and hormones.
Keywords:
Bacterial cellulose; delivery systems; external stimuli; hydrogels
REFERENCES
Abd Alla, S.G., Nizam El-Din, H.M. & El-Naggar, A.W.M. 2007.
Structure and swelling release behaviour of poly (vinyl pyrrolidone) (PVP) and acrylic acid (Aac) copolymer hydrogels prepared by gamma
irradiation. European Polymer Journal 43: 2987-2998.
Benamer, S., Mahlous, M., Boukrif, A., Mansouri, B. &
Youcef, S.L. 2006. Synthesis and characterization of hydrogels based on poly
(vinyl pyrrolidone). Nuclear Instruments and Methods in Physics Research (B)
Beam Interaction with Materials & Atoms 248: 284-290.
Bromberg, L., Temchenko, M., Alakhov, V. & Alan Hatton, T.
2004. Bioadhesive properties and rheology of polyether-modified poly(acrylic
acid) hydrogels. International Journal of Pharmaceutics 282: 45-60.
Carenza, M., Caliceti, P., Veronese, F.M., Martellini, F., Higa,
O.Z., Yoshida, M. & Katakai, R. 2000. Poly(acryloyl-L-proline methyl ester)
hydrogels obtained by radiation polymerization for the controlled release of
drugs. Radiation Physics and Chemistry 57: 471-475.
Clough, R.L. 2001. High-energy radiation and polymers: A review
of commercial processes and emerging applications. Nuclear Instruments and
Methods in Physics Research (B) Beam Interaction with Materials & Atoms 185:
8-33.
da Silva, R. & Ganzarolli de Oliveira, M. 2007. Effect of
the cross-linking density on the morphology of poly(NIPAAm-co-Aac)
hydrogels. Polymer 48: 4114-4122.
El-Naggar, A.W.M., Abd Alla, S.G. & Said, H.M. 2006.
Temperature and pH responsive behavior of CMC/AAc hydrogels prepared by
electron beam irradiation. Material Chemistry and Physics 95: 158-163.
Fechine, G.J.M., Barros, J.A.G. & Catalani, L.H. 2004. Poly
(n-vinyl-2-pyrrolidone) hydrogels production by ultraviolet radiation : new
methodologies to accelerate crosslinking. Polymer 45: 4705-4709.
Karlsson, J.O. & Gatenholm, P. 1997. Preparation and
characterization of cellulose-supported HEMA hydrogels. Polymer 38(18): 4727-4731.
Kei, W., Millon, L. 2005. Polyvinyl alcohol bacterial cellulose
nanocomposite. Freepatentsonline.
http://www.freepatentsonline.com/20050037082.html
Knolle, W., Mehnert, R. 1995. Primary reaction in the electron
induced polymerization of acrylates. Nuclear Instruments and Methods in
Physics Research (B) Beam Interaction with Materials & Atoms 105:
154-158
Kubota, H., Shiobara, N. 1998. Photografting of
N-isopropylacrylamide on cellulose and temperature-responsive character of the
resulting grafted cellulose. Reactive & Functional Polymers 37:
219-224.
Liu, P., Zhai, M., Li, J., Peng, J., Wu, J. 2002. Radiation
preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiation
Physics and Chemistry 63: 525-528.
LopŽrgolo, L.C., Catalani, L.H., Machado, L.D.B., Rela, P.R.,
& Lugao, A.B. 2000. Development of reinforced hydrogels – I. Radiation
induced graft copolymerization of methylmethacrylate on non-woven polypropylene
fabric. Radiation Physics and Chemistry 57: 451-454.
LopŽrgolo, L.C., Lug‹o, A.B. & Catalani, L.H. 2003. Direct UV photocrosslinking of poly (N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer 44: 6217-6222.
Miyajima, M., Yoshida, M., Sato, H., Omichi, H., Katakai, R.
& Higuchi, W.I. 1995. Release control of 9-§-D-arabinofuranosyladenine from
thermo-responsive gels. Radiation Physics and Chemistry 46(2): 199-201.
Mondino, A.V., Gonzalez, M.E., Romero, G.R. & Smolko, E.E.
1999. Physical properties of gamma irradiated poly(vinyl alcohol) hydrogel
preparations. Radiation Physics and Chemistry 55: 723-726.
Nagasawa, N., Yagi, T., Kume, T. & Yoshii, F. 2004.
Radiation crosslinking of carboxymethyl starch. Carbohydrate Polymers 58:
109-113.
Panda, A., Manohar, S.B., Sabharwal, S., Bhardwaj, Y.K. &
Majali, A.B. 2000. Synthesis and swelling characteristics of poly
(N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron
beam irradiation. Radiation Physics and Chemistry 58(1) : 101-110.
Pekel, N., Sahiner, N. & Guven, O. 2000. Development of new
chelating hydrogels based on N-vinyl amidazole and acrylonitrile. Radiation
Physics and Chemistry 59(5-6): 485-491.
Pekel, N., Yoshii, F., Kume, T. & Guven, O. 2004. Radiation
crosslinking of biodegradable hydroxypropylmethylcellulose. Carbohydrate
Polymers 55: 139-147.
Safrany, A. 1997. Radiation processing: Synthesis and
modification of biomaterials for medical use. Nuclear Instruments and
Methods in Physics Research (B) Beam Interaction with Materials & Atoms 131:
376-381.
Said, H.M., Abd Alla, S.G. & El-Naggar, A.W.M. 2004.
Synthesis and characterization of novel gels based on carboxymethyl
cellulose/acrylic acid prepared by electron beam irradiation. Reactive &
Functional Polymers 61: 397-404.
Scherzer, T., Beckert, A., Langguth, H., Rummel, S. &
Mehnert, R. 1997. Electron beam curing of methacrylated gelatin. I. Dependence
of the degree of crosslinking on the irradiation dose. Journal of Applied
Polymer Science 63: 1303-1312.
Strauss, P., Knolle, W. & Naumov, S. 1998. Radiation-induced
radical formation and crosslinking in aqueous solutions of
N-isopropylacrylamide. Macromolecular Chemistry and Physics 199:
2229-2235.
Tamburic, S. & Craig, D.Q.M. 1995. An investigation into the
rheological, dielectric and mucoadhesive properties of poly (acrylic acid) gel
systems. Journal of Controlled Release 37: 59-68.
Trieu, H. & Qutubuddin, S. 1995. Poly (vinyl alcohol)
hydrogels: 2. Effects of processing parameters on structure and properties. Polymer 36(13): 2531-2539.
Varshney, L. 2007. Role of natural polysaccharides in radiation
formation of PVA-hydrogel wound dressing. Nuclear
Instruments and Methods in Physics Research (B) Beam Interaction with Materials
& Atoms. 225: 343-349.
Wach, R.A., Mitomo, H., Nagasawa, N. & Yoshii, F. 2003.
Radiation crosslinking of methylcellulose and hydroxyethylcellulose in
concentrated aqueous solutions. Nuclear Instruments and Methods in Physics
Research (B) Beam Interaction with Materials & Atoms 211: 533-544.
Yetimoglu, E.K., Kahraman, M.V., Ercan, …., Akdemir, Z.S. &
Apohan, N.K. 2007. N-vinylpyrrolidone/acrylic
acid/2-acrylamido-2-2methylpropane sulfonic acid based hydrogels: Synthesis,
characterization and their application in the removal of heavy metal. Reactive
& Functional Polymers 67: 451-460.
Yoshii, F., Zhao, L., Wach, R.A., Nagasawa, N., Mitomo, H. &
Kume, T. 2003. Hydrogels of polysaccharide derivatives crosslinked with
irradiation at paste-like condition. Nuclear Instruments and Methods in
Physics Research (B) Beam Interactions with Materials & Atoms 208:
320-324.
Yoshii, F., Makuuchi, K., Darwis, D., Iriawan, T., Razzak, M.T.
& Rosiak, J.M. 1995. Heat resistance poly(vinyl alcohol) hydrogel. Radiation
Physics and Chemistry 46(2): 169-174.
*Corresponding
author; email: mciamin@pharmacy.ukm.my
|