Sains Malaysiana 38(6)(2009): 835–840
Gambaran Inovatif terhadap Permukaan Persamaan Pembezaan Separa
(Innovative
Representation of Partial Differential Equations Surface)
Shahrul Nizam Ishak & Jamaludin Md Ali*
Pusat Pengajian Sains Matematik
Universiti Sains Malaysia, 11800 Penang, Malaysia
Received: 18 November 2008 / Accepted:
4 February 2009
ABSTRAK
Makalah ini menunjukkan dua jenis peringkat Persamaan Pembezaan Separa(PPS) dalam versi teritlak daripada kaedahPPS Bloor-Wilson. Modifikasi terhadap parameter a(u, v) dalam persamaan tersebut diilustrasikan melalui beberapa contoh. Kelebihan dan kekurangan terhadap aplikasinya juga dibincangkan.
Kata kunci: Gambaran permukaan bentuk bebas; lengkung berkelopak bunga; tembikar; peringkatPPS
ABSTRACT
This paper
presents two types of orders of Partial Differential Equations (PDE) in a generalized version from the Bloor-Wilson PDE method. The modification of the parameter a(u,
v) in the equation is illustrated with some examples. The advantage and
disadvantage on the application are also been discussed.
Keywords:
Free-form surface representation; petaloid curve;
earthenware jar; orders of PDE
REFERENCES
Bloor, M.I.G. & Wilson, M.J. 1989. Generating blend surfaces using partial differential equation. Computer
Aided Design 21(3): 165-171.
Bloor, M.I.G. & Wilson, M.J. 1990. Using partial differential equations to
generate free-form Surfaces. Computer Aided Design 22(4):
200-212.
Bloor, M.I.G. & Wilson, M.J. 1995. The efficient parameterization of generic
aircraft geometry. Journal of Aircraft 32(6): 1269-1275.
Bloor, M.I.G. & Wilson, M.J. 1996. Spectral approximations to PDE surfaces. Computer Aided Design 28(2): 145-152.
Dekanski, C.W., Bloor, M.I.G. & Wilson, M.J. 1995. The generation of propeller blade geometries
using the PDE method. Journal of Ship Research 39(2): 108-116.
Du, H. & Qin, H. 2005. Dynamic PDE-based surface design using
geometric and physical constraints. Graphical Models 67(1):
43-71.
Elyan, E. & Ugail, H. 2007. Reconstruction of 3D Human Facial Images Using Partial
Differential Equations. ACM Trans. Journal of Computers 2(8): 1-8.
Gonz‡lez, G., Ugail, H., Willis, P.
& Sheng, Y. 2008. Parametric Representation of Facial Expressions on PDE-based
Surfaces. Eighth IASTED International Conference on Visualization, Imaging
and Image Processing (VIIP 2008): Palma de Mallorca, Spain: 402-407.
Shahrul, N.I, Yahya, Z.R. & Jamaludin, M.A. 2008. Moulding Vase-Design Interactively using GUI. Proceedings of International
Conference on Science & Technology: Applications in Industry &
Education: Penang, Malaysia: 2598-2603.
Shahrul, N.I. & Jamaludin, M.A.
2008. Parametric surface generation using
partial differential equations (PDE) based approach. MATEMATIKA 24(2):
149-158.
Lowe, T.W., Bloor, M.I.G. & Wilson, M.J. 1990. Functionality in Blend Design. Computer
Aided Design 22(10): 655-665.
Ugail, H., Bloor, M.I.G. & Wilson, M.J. 1999. Techniques for Interactive Design using the
PDE Method. ACM Trans. On Graph. Des. 18(2): 195-212.
Ugail, H. 2003. On the Spine of a PDE Surface. In Springer-Verlag, edited by MJ Wilson, RR Martin. Proceedings of Mathematics of Surfaces X. Berlin: pp.
366-376.
Ugail, H. & Kirmani, S. 2006. Techniques for
interactive design using the PDE method. WSEAS Transactions on
Computers 10(5): 2156-2161.
Ugail, H. & Sourin, A. 2008. Partial Differential Equations for
Function based Geometry Modeling within Visual Cyberworlds. Cyberworlds 2008. IEEE Computer Society pp. 224-231.
You, L.H., Zhang, J.J. & Comninos,
P. 2004. Blending surface generation using a fast and
accurate analytical solution of a fourth-order PDE with three shape control
parameters. The Visual Computer 20(2-3): 199-214.
Zhang, J.J. & You, L.H. 2001. Surface Representation using Second, Fourth
and Mixed Order Partial Differential Equations. Proceeding
of the International Conference on Shape Modeling and Applications. Genova: IEEE Computer Society. pp. 250-256.
*Corresponding
author; email: jamaluma@cs.usm.my
|