Sains
Malaysiana 38(6)(2009): 857–861
Pencirian Mikrostruktur Katod
La-Sr-Co-Fe-O bagi Sel Fuel Oksida
Pepejal Bersuhu Sederhana
(IT-SOFC )
(Microstructure
Characterization of La-Sr-Co-Fe-O Cathode for Intermediate
Temperature
Solid Oxide Fuel Cell (IT-SOFC))
Noorashrina A. Hamid, Andanastuti Muchtar, Wan Ramli Wan Daud* & Norhamidi Muhamad
Institut Sel Fuel, Universiti
Kebangsaan Malaysia
43600 UKM Bangi, Selangor, D.E., Malaysia
Received: 14 January 2009 / Accepted:
27 April 2009
ABSTRAK
Oksida
perovskit La1-xSrxCo0.2Fe0.8O3-δ (LSCF) dengan x = 0.3-0.5 telah dihasilkan melalui kaedah sol-gel. Ia
merupakan pengalir berion campuran yang sangat baik sebagai bahan katod untuk
sel fuel oksida pepejal bersuhu sederhana (IT-SOFC). Serbuk yang terhasil dicirikan dengan menggunakan teknik
pembelauan sinar-X (XRD) dan
keputusannya menunjukkan bahawa hablur perovskit yang tulen terhasil sepenuhnya
setelah dikalsin pada suhu 900oC. Kesan suhu pensinteran ke atas
pelet LSCF dikenal pasti dengan
menggunakan Mikroskop Elektron Imbasan (SEM). Keputusan menunjukkan bahawa perovskit LSCF mempunyai keliangan yang optimum sebanyak 30% setelah disinter
pada suhu 900 oC. Keliangan optimum ini membolehkan tindak balas
penurunan oksigen berlaku dengan lebih mudah. Analisis FTIR yang dijalankan menunjukkan kehadiran ikatan Fe-O dalam serbuk LSCF dan tiada bendasing yang wujud dalam serbuk LSCF.
Kata kunci:
Lantanum strontium kobalt ferit oksida (LSCF); pencirian mikrostruktur; suhu pensinteran; sel fuel oksida
pepejal (SOFC)
ABSTRACT
Perovskite
oxide La1-xSrxCo0.2Fe0.8O3-δ (LSCF) with x = 0.3-0.5, an excellent mixed-ionic conductor that can be
used as cathode material for the intermediate temperature solid oxide fuel cell (IT-SOFC) has been developed using the
sol-gel method. The resulting powder was characterised using X-Ray Diffraction (XRD) which showed that pure crystals of perovskite were fully formed
after calcination at 900 oC. The effect of sintering temperature on
the microstructure was observed using Scanning Electron Microscopy (SEM) analysis. The results showed that the LSCF perovskite have the optimum porosity of 30% after sintered at
900 oC and thus enable the oxygen reduction occurred easily. FTIR results revealed that only Fe-O bond exists in the LSCF powder and no impurities detected.
Keywords:
Lanthanum strontium cobalt ferrite (LSCF); microstructure characterisation; sintering temperature; solid
oxide fuel cell (SOFC)
REFERENCES
Baqué, L. & Serquis, A. 2007. Microstructural
characterization of La0.4Sr0.6Co0.8Fe0.2O3–δ films deposited by dip coating. Applied Surface Science 254:
213-218.
Brinker, C.J. 1990. Sol-gel
science, the physics and chemistry of sol-gel processing. New York:
Academic Press.
Eguchi, K. 1997. Ceramic Materials
Containing Rare Earth Oxides for Solid Oxide Fuel Cells. Journal of Alloys
and Compound 250: 486.
Jiang, S.P., Love, J.G., Zhang,
J.P., Hoang, M., Ramprakash, Y., Hughes, A.E. & Badwal, S.P.S. 1999. The
electrochemical performance of LSM/zirconia–yttria interface as a function of
a-site non-stoichiometry and cathodic current treatment. Solid State Ionics 121
: 1-10.
Jin, W., Li, S., Huang, P., Xu, N.
& Shi, J. 2000. Fabrication of La0.8Sr0.2Co0.8Fe0.2O3 mesoporous
membrane on porous support from polymeric precursors. Journal of Membrane
Science 170: 9-17.
Leng, Y.J., Chan, S.H. & Liu,
Q.L. 2008. Development of LSCF-GDC composite cathodes for low-temperature solid
oxide fuel cells with thin film GDC electrolyte International Journal of Hydrogen
Energy 33: 3808-3817.
Li, K., Wu, F., Wang, D., Xie, T.
& Li, T. 2001. Electron behavior and photoelectric gas-sensitive characters
of nanocrystalline La1-xSrxFeO3. Materials Chemistry and Physics 71: 34-39.
Liu, S., Qian, X. & Xioa, J.
2007. Synthesis and characterization of La0.8Sr0.2Co0.5Fe0.5O3± δ nanopowders by microwave assisted sol-gel route. Journal
of Sol-Gel Science Technology 44: 187-193.
Mogenson, M., Jensen, K. V.,
Jorgensen, M. J. & Primdahl, S. 2002. Progress in Understanding Solid Oxide
Fuel Cells Electrodes. Solid State Ionics 150: 123.
Murata, K., Fukui, T., Abe, H.,
Naito, M. & Nogi, K. 2005. Morphology control of La(Sr)Fe(Co)O3-a cathodes
for IT-SOFCs. Journal of Power Sources 145: 257-261.
Qiu, L., Ichikawa, T., Hirano, A.,
Imanishi, N. and Takeda, Y.,2002. Ln1−xSrxCo1−yFeyO3−δ (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide
fuel cells. Solid State Ionics 158: 55-65.
Tai, L. W., Nasrallah, M. M.,
Anderson, H. U., Sparlin, D. M., Sehlin, S. R. 1995. Structure and electrical
properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid
State Ionics 76: 259-271.
Stoichniol, G., Syskakis, E.,
Naoumidis, A. 1995. Chemical compatibility between strontium-doped lanthanum
manganite and yttria-stabilized zirconia. Journal of American Ceramic
Society 78: 929-932.
Wenshi, P. & Gaokui, L. 1982.
Theoretical analyses of the infrared spectrum of baiyuneboite-(Ce). Chinese
Journal of Geochemistry 9: 137-142.
Yamamoto, O., Takeda, Y., Kanno, R.
& Noda, M. 1987. Perovskite-type oxides as oxygen electrodes for high
temperature oxide FC. Solid State Ionics 22: 241-246.
*Corresponding author; email:
wramli@vlsi.eng.ukm.my
|