Sains Malaysiana 38(6)(2009): 889–894
Fabrication of Deep Trenches
in Silicon Wafer using Deep Reactive Ion Etching with Aluminum Mask
(Fabrikasi Jurang dalam pada Wafer Silikon Menggunakan Punaran Ion Reaktif Dalam dengan Topeng Aluminium)
Bahram Azizollah Ganji*
& Burhanuddin Yeop Majlis
Institute of Microengineering and Nanoelectronics (IMEN)
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor D.E, Malaysia
Bahram Azizollah Ganji
Department of Electrical
Engineering, Babol University of Technology, 484 Babol, IRAN
Received: 13 January 2009 / Accepted:
3 February 2009
ABSTRACT
In this
paper, a deep-reactive ion etching (DRIE) process for fabricating microelectromechanical system (MEMS) silicon trenches with a depth
of more than 250 μm is described. The DRIE was produced in oxygen-added sulfur hexafluoride (SF6) plasma, with sample cooling to cryogenic temperature using a Plasmalab System 100 ICP 180 at different RF powers. A series of experiments were performed to determine the
etch rate and selectivity of some masking materials such as resists and metal
(Al). Experiments showed that different materials have different etch rates,
but for the Al mask, an etch rate of 5.44 ¥ 10-3 nm/min was achieved, that exhibited stronger resistance against RIE than photo resists. By controlling the major parameters for
plasma etch, an etch rate of 2.85 microns per minute for silicon and a high
selectivity of 5.24 ¥ 105 to the Al
etch mask have been obtained. A 90 min etching experiments using etching gas SF6 of 60 standard cubic centimeters per minutes (sccm) with oxygen (13 sccm) were
performed by supplying RF power of 5
W to an ICP of 600 watts, and silicon
etching process with a depth of 257 μm was
demonstrated. Our experiments showed that Al is the best mask material for very
deep trenches in silicon.
Keywords:
Al mask; deep trench; deep trenches ion etching; etch rate; silicon structure
ABSTRAK
Kertas ini menerangkan proses punaran ion reaktif dalam(DRIE) yang dijalankan dalam memfabrikasi jurang-jurang silikonMEMS dengan kedalaman melebihi 250 μm. Proses DRIE dijalankan dalam plasma sulfur heksafluorida (SF6) beroksigen, dengan sampel disejukkan ke suhu kryogenik menggunakan Plasmalab System 100 ICP 180 pada kuasaRF yang berbeza. Satu jujukan uji kaji kemudian dijalankan untuk menentukan kadar punaran dan selektiviti bahan topeng seperti rintang foto dan logam (aluminium). Uji kaji menunjukkan bahan-bahan berbeza mempunyai kadar punaran yang berbeza tetapi bagi topeng aluminium, kadar punaran 5.44 ¥ 10-3 nm/minit telah diperoleh, seterusnya menunjukkan ketahanannya yang kuat terhadapRIE berbanding rintang foto. Dengan mengawal parameter-parameter utama seperti punaran plasma, kadar punaran 2.85 mikron/minit dan selektiviti 5.24 ¥ 105 terhadap topeng aluminium telah diperoleh. Uji kaji punaran selama 90 minit menggunakan gas SF6 pada piawai 60 standard kubik cm per minit (sccm) dengan oksigen (13 sccm) telah dijalankan dengan membekalkan kuasaRF 5W kepadaICP 600 Watt, dan proses pemunaran silikon pada kedalaman 257 μm telah dilaksanakan. Uji kaji kami menunjukkan aluminium adalah bahan yang terbaik untuk dijadikan topeng bagi memfabrikasi jurang dalam pada silikon.
Kata kunci: Jurang dalam; kadar punaran; punaran kering berkedalaman tinggi; struktur silikon; topeng Al
REFERENCES
Akashil, T., Yoshimura, Y. & Higashiyama, S. 2005. Deep reactive
ion etching of pyrex glass
using a bonded silicon wafer as an etching mask. 18th IEEE International Conference on
Micro Elecro Mechanical Systems pp. 520-525.
Akushi, T., Kanamaru, I. M., Kazumu, A., Itou, Y., Horino, I.
M., Fukudu, K., Ishikawa, T., Huradu,
T. & Okada, R. 2004. Fabrication
of a 35-channel optical scanner integrated by passive- self alignment using
through-holes precisely formed by DRIE. 17th IEEE International Conference on
Micro Elecro Mechanical Systems pp. 677-680.
Ayon, A.A., Braff, B., Lin, C.C., Sawin, H.H. & Schmidt, M.A.
1999. Characterization of a time multiplexed inductively coupled plasma etcher. J.Electrochem. Soc. 146: 339–339.
Belov, N. & Khe, N. 2002. Using deep
RIE for micromachining SOI wafers. Electronic Components and Technology
Conference, IEEE. pp. 1162-1166.
Burhanuddin Y.M., Wong, Y.Y. & Sooriakumar,
K. 2005. Optimization of deep trench etching process for silicon
MEMS structure using Deep Reactive Ion Etching. NSM
2005 Proc. p. 285-289.
Chabloz, M., Sakai, Y., Matsuura, T. & Tsutsumi,
K. 2000. Improvement of
sidewall roughness in deep silicon etching. Microsyst.
Technol. 6: 86-89.
Chuang, Y.J., Tseng, F.G. & Lin,
W.K. 2002. Reduction of diffraction effect of UV exposure on
SU-8 negative thick photoresist by air gap
elimination. Microsyst. Technol. 8:
308-313.
Coburn,
J.W. & Winters, H.F. 1979. Plasma etching—a discussion of mechanisms. J. Vac. Sci.
Technol. 16: 391-403.
Fu, L., Miao, J.M., Li, X.X. &
Lin, R.M. 2001. Study of deep silicon etching for
micro-gyroscope fabrication. Appl. Surface Sci. 177: 78-84.
Gao, J.X., Yeo, L.P., Chan-Park, M. B.,
Miao, J.M., Yan, Y.H., Sun, J.B., Lam, Y.C. & Yue,
C.Y. 2006. Antistick postpassivation of high-aspect ratio silicon molds fabricated by Deep-Reactive Ion Etching. Journal
of Microelectromechanical Systems 15: 84-93.
Glenn, B. & Salupo1, C. S. 2000.
Deep RIE process for silicon carbide power electronics MEMS. Published in
Materials Research Society Symposium Proceedings 622: 1-6.
Iliescu, C. & Miao, J. 2003.
One-mask process for silicon accelerometers on pyrex glass utilizing notching effect in ICP DRIE. Electron. Lett. 39: 658-659.
Miao, J.,
Lin, R., Chen, L., Zou, Q., Lim, S.Y. & Seah, S.H. 2002. Design
considerations in micromachined silicon microphones. Microelectronics
Journal, Published by Elsevier Science Ltd. 33: 21-28.
Toshiyoshi, H., Isamoto, K., Morosawa,
A., Tei, M. & Fujita, H. 2003. A 5-volt operated MEMS variable optical attenuator. In Proc.
Transducers 8-12: 1768-1771.
Waits, C.M., Morgan, B., Kastantin, M. & Ghodssi, R.
2005. Microfabrication of 3D silicon MEMS structures using gray-scale lithography and
deep reactive ion etching. Sensors and Actuators A 119: 245-253.
Zhang, Z.L. & MacDonald, N.C.
1992. A RIE process for submicron, silicon electromechanical
structures. J. Micromech. Microeng. 2: 31-31.
*Corresponding author; mail: baganji@vlsi.eng.ukm.my
|