Sains Malaysiana 38(6)(2009): 889–894

 

 

Fabrication of Deep Trenches in Silicon Wafer using Deep Reactive Ion Etching with Aluminum Mask

(Fabrikasi Jurang dalam pada Wafer Silikon Menggunakan Punaran Ion Reaktif Dalam dengan Topeng Aluminium)

 

Bahram Azizollah Ganji* & Burhanuddin Yeop Majlis

Institute of Microengineering and Nanoelectronics (IMEN)

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E, Malaysia

 

Bahram Azizollah Ganji

Department of Electrical Engineering, Babol University of Technology, 484 Babol, IRAN

 

Received: 13 January 2009 / Accepted: 3 February 2009

 

 

ABSTRACT

 

In this paper, a deep-reactive ion etching (DRIE) process for fabricating microelectromechanical system (MEMS) silicon trenches with a depth of more than 250 μm is described. The DRIE was produced in oxygen-added sulfur hexafluoride (SF6) plasma, with sample cooling to cryogenic temperature using a Plasmalab System 100 ICP 180 at different RF powers. A series of experiments were performed to determine the etch rate and selectivity of some masking materials such as resists and metal (Al). Experiments showed that different materials have different etch rates, but for the Al mask, an etch rate of 5.44 ¥ 10-3 nm/min was achieved, that exhibited stronger resistance against RIE than photo resists. By controlling the major parameters for plasma etch, an etch rate of 2.85 microns per minute for silicon and a high selectivity of 5.24 ¥ 105 to the Al etch mask have been obtained. A 90 min etching experiments using etching gas SF6 of 60 standard cubic centimeters per minutes (sccm) with oxygen (13 sccm) were performed by supplying RF power of 5 W to an ICP of 600 watts, and silicon etching process with a depth of 257 μm was demonstrated. Our experiments showed that Al is the best mask material for very deep trenches in silicon.

 

Keywords: Al mask; deep trench; deep trenches ion etching; etch rate; silicon structure

 

 

ABSTRAK

 

Kertas ini menerangkan proses punaran ion reaktif dalam(DRIE) yang dijalankan dalam memfabrikasi jurang-jurang silikonMEMS dengan kedalaman melebihi 250 μm. Proses DRIE dijalankan dalam plasma sulfur heksafluorida (SF6) beroksigen, dengan sampel disejukkan ke suhu kryogenik menggunakan Plasmalab System 100 ICP 180 pada kuasaRF yang berbeza. Satu jujukan uji kaji kemudian dijalankan untuk menentukan kadar punaran dan selektiviti bahan topeng seperti rintang foto dan logam (aluminium). Uji kaji menunjukkan bahan-bahan berbeza mempunyai kadar punaran yang berbeza tetapi bagi topeng aluminium, kadar punaran 5.44 ¥ 10-3 nm/minit telah diperoleh, seterusnya menunjukkan ketahanannya yang kuat terhadapRIE berbanding rintang foto. Dengan mengawal parameter-parameter utama seperti punaran plasma, kadar punaran 2.85 mikron/minit dan selektiviti 5.24 ¥ 105 terhadap topeng aluminium telah diperoleh. Uji kaji punaran selama 90 minit menggunakan gas SF6 pada piawai 60 standard kubik cm per minit (sccm) dengan oksigen (13 sccm) telah dijalankan dengan membekalkan kuasaRF 5W kepadaICP 600 Watt, dan proses pemunaran silikon pada kedalaman 257 μm telah dilaksanakan. Uji kaji kami menunjukkan aluminium adalah bahan yang terbaik untuk dijadikan topeng bagi memfabrikasi jurang dalam pada silikon.

 

Kata kunci: Jurang dalam; kadar punaran; punaran kering berkedalaman tinggi; struktur silikon; topeng Al


 

REFERENCES

 

Akashil, T., Yoshimura, Y. & Higashiyama, S. 2005. Deep reactive ion etching of pyrex glass using a bonded silicon wafer as an etching mask. 18th IEEE International Conference on Micro Elecro Mechanical Systems pp. 520-525.

Akushi, T., Kanamaru, I. M., Kazumu, A., Itou, Y., Horino, I. M., Fukudu, K., Ishikawa, T., Huradu, T. & Okada, R. 2004. Fabrication of a 35-channel optical scanner integrated by passive- self alignment using through-holes precisely formed by DRIE. 17th IEEE International Conference on Micro Elecro Mechanical Systems pp. 677-680.

Ayon, A.A., Braff, B., Lin, C.C., Sawin, H.H. & Schmidt, M.A. 1999. Characterization of a time multiplexed inductively coupled plasma etcher. J.Electrochem. Soc. 146: 339–339.

Belov, N. & Khe, N. 2002. Using deep RIE for micromachining SOI wafers. Electronic Components and Technology Conference, IEEE. pp. 1162-1166.

Burhanuddin Y.M., Wong, Y.Y. & Sooriakumar, K. 2005. Optimization of deep trench etching process for silicon MEMS structure using Deep Reactive Ion Etching. NSM 2005 Proc. p. 285-289.

Chabloz, M., Sakai, Y., Matsuura, T. & Tsutsumi, K. 2000. Improvement of sidewall roughness in deep silicon etching. Microsyst. Technol. 6: 86-89.

Chuang, Y.J., Tseng, F.G. & Lin, W.K. 2002. Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination. Microsyst. Technol. 8: 308-313.

Coburn, J.W. & Winters, H.F. 1979. Plasma etching—a discussion of mechanisms. J. Vac. Sci. Technol. 16: 391-403.

Fu, L., Miao, J.M., Li, X.X. & Lin, R.M. 2001. Study of deep silicon etching for micro-gyroscope fabrication. Appl. Surface Sci. 177: 78-84.

Gao, J.X., Yeo, L.P., Chan-Park, M. B., Miao, J.M., Yan, Y.H., Sun, J.B., Lam, Y.C. & Yue, C.Y. 2006. Antistick postpassivation of high-aspect ratio silicon molds fabricated by Deep-Reactive Ion Etching. Journal of Microelectromechanical Systems 15: 84-93.

Glenn, B. & Salupo1, C. S. 2000. Deep RIE process for silicon carbide power electronics MEMS. Published in Materials Research Society Symposium Proceedings 622: 1-6.

Iliescu, C. & Miao, J. 2003. One-mask process for silicon accelerometers on pyrex glass utilizing notching effect in ICP DRIE. Electron. Lett. 39: 658-659.

Miao, J., Lin, R., Chen, L., Zou, Q., Lim, S.Y. & Seah, S.H. 2002. Design considerations in micromachined silicon microphones. Microelectronics Journal, Published by Elsevier Science Ltd. 33: 21-28.

Toshiyoshi, H., Isamoto, K., Morosawa, A., Tei, M. & Fujita, H. 2003. A 5-volt operated MEMS variable optical attenuator. In Proc. Transducers 8-12: 1768-1771.

Waits, C.M., Morgan, B., Kastantin, M. & Ghodssi, R. 2005. Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching. Sensors and Actuators A 119: 245-253.

Zhang, Z.L. & MacDonald, N.C. 1992. A RIE process for submicron, silicon electromechanical structures. J. Micromech. Microeng. 2: 31-31.

 

 

*Corresponding author; mail: baganji@vlsi.eng.ukm.my

 

 

 

 

previous