Sains
Malaysiana 38(6)(2009): 901–909
Peningkatan Keupayaan
Pembangunan Produk Baru
Melalui Pemodelan Matematik
(Improving
New Product Development using a Mathematical Model)
Muhammad Marsudi, Dzuraidah Abdul Wahab
Lily Amelia & Che Hassan Che Haron*
Jabatan Kejuruteraan Mekanik dan Bahan
Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E., Malaysia
Received: 4 November 2008 / Accepted:
18 Febuary 2009
ABSTRAK
Kertas ini
membincangkan pembangunan suatu alat sokongan pembuat keputusan dalam mereka
bentuk produk berasaskan teori baris-gilir yang dikaitkan dengan maklumat masa
kitar pembuatan. Dengan penggunaan alat sokongan ini, kesan reka bentuk sesuatu
produk terhadap parameter kapasiti dan masa kitar pembuatan sesuatu sistem
pembuatan sedia ada dapat ditentukan. Aplikasi alat sokongan ini membolehkan
kumpulan pembangunan produk membangunkan produk sebenar pada masa yang singkat,
meminimumkan kos pembangunan serta mengurangkan keperluan untuk mereka bentuk
semula produk. Alat sokongan ini telah diaplikasikan pada sebuah industri
automotif tempatan dan hasil kajian menunjukkan bahawa alat sokongan tersebut
telah berjaya melakukan analisis masa kitar dan tahap penggunaan pada sistem
pembuatan sedia ada. Pada jumlah keluaran 44 komponen/jam dan saiz sesekumpul
80, hasil analisis menunjukkan tahap penggunaan pada 98% dengan masa kitar 17.8
jam bagi pemprosesan gabungan produk yang terdiri daripada komponen dengan reka
bentuk baru dan reka bentuk sedia ada.
Kata kunci:
Kapasiti pengeluaran; masa kitar; teori baris gilir; reka bentuk produk; sistem
pembuatan
ABSTRACT
This paper
discusses the development of a decision support tool based on the queuing
theory which was linked to manufacturing cycle time information. With the use
of this tool, the effects of product design to the capacity and manufacturing
cycle time of an existing manufacturing system can be determined. The decision
support tool enabled the product design team to develop products in a shorter
lead time with reduced cost, while minimising redesign during the design
development process. The tool has been applied to a local automotive industry
and results from the study showed that the tool has been successful in
analysing cycle time and utilisation of the existing manufacturing system. For
a throughput of 44 parts/hour and batch size 80, results from the analysis show
a utilisation rate of 98% and cycle time of 17.8 hours, for the production of
mixed products that comprised parts with new and existing design.
Keywords:
Production capacity; cycle time; queuing theory; product design; manufacturing
system
REFERENCES
Ahmadi, R. & Wang, R.H. 1999. Managing development risk in
product design process. Operations Research 47(2): 235-246.
Balachandra, R. 1991. Some strategic aspects of faster new
product introduction. Engineering Management Conference 226-229.
Bermon, S., Feigin, G. & Hood, S. 1995. Capacity analysis of
complex manufacturing facilities. Proceedings of the 34th Conference on
Decision and Control 1935-1940.
Bralla, J.G. 1996. Design for Excellence. USA:
McGraw-Hill Inc.
Burhanuddin S. & Randhawa, S.U. 1992. A framework for
integrating manufacturing process design and analysis. Computers and
Industrial Engineering 23(1-4): 27-30.
Chincholkar, M.M. 2002. Design for Production: Using
Manufacturing Cycle Time Information to Improve Product Development. Maryland:
Institute for Systems Research.
Elhafsi, M. & Rolland, E. 1999. Negotiating price and
delivery date in a stochastic manufacturing environment. IIE Transactions 31:
255-270.
Govil, M. 1999. Integrating product design and production:
Designing for time-to- market. Tesis PhD. USA: University of Maryland.
Hopp, W.J. & Spearman, M.L. 2000. Factory Physics.
Second edition. Boston: Irwin/McGraw Hill.
Ingress Precision. 2004. Ahead of Technology. Cetakan
Brosur.
Koo, P.H., Moodie, C.L. & Tavalage, J.J. 1995. A spreadsheet
model approach for integrating static capacity planning and stochastic queuing
models. International Journal of Production Research 3(5): 1369-1385.
Singh, N. 1996. Systems Approach to Computer-integrated
Design and Manufacturing. New York: John Wiley and Sons.
Soundar, P. & Bao, H.P. 1994. Concurrent design of products
for manufacturing system performance. Proceedings of the IEEE 1994
International Engineering Management Conference 233-240.
Suri, R. & Diehl, G.W. 1985. MANUPLAN, A precursor to
simulation for complex manufacturing systems. Proceeding of the Winter
Simulation Conference 411-428.
Taylor, D.G., English, J.R. & Graves, R.J. 1994. Designing
new products: Compatibility with existing product facilities and anticipated
product mix. Integrated Manufacturing Systems 5(4/5): 13-21.
Vollmann, T.E., Berry, W.L. & Whybark, D.C. 1997. Manufacturing
Planning and Control Systems. Fourth edition. New York: Irwin/McGraw-Hill.
Wei, Y. 2001. Concurrent design for optimal quality and cycle
Time. Tesis PhD. Massachusets: Department of Mechanical Engineering,
Massachusetts Institute of Technology.
Wei, Y. & Thornton, A.C. 2002. Concurrent design for optimal
production performance. Paper DETC2002/DFM-34163 in CD-ROM Proceedings of
2002 ASME Design Engineering Technical Conference.
*Corresponding
author; email: chase@vlsi.eng.ukm.my
|