Sains Malaysiana 38(6)(2009): 901–909

 

 

Peningkatan Keupayaan Pembangunan Produk Baru

Melalui Pemodelan Matematik

(Improving New Product Development using a Mathematical Model)

 

Muhammad Marsudi, Dzuraidah Abdul Wahab

Lily Amelia & Che Hassan Che Haron*

Jabatan Kejuruteraan Mekanik dan Bahan

Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E., Malaysia

  Received: 4 November 2008 / Accepted: 18 Febuary 2009

 

 

ABSTRAK

 

Kertas ini membincangkan pembangunan suatu alat sokongan pembuat keputusan dalam mereka bentuk produk berasaskan teori baris-gilir yang dikaitkan dengan maklumat masa kitar pembuatan. Dengan penggunaan alat sokongan ini, kesan reka bentuk sesuatu produk terhadap parameter kapasiti dan masa kitar pembuatan sesuatu sistem pembuatan sedia ada dapat ditentukan. Aplikasi alat sokongan ini membolehkan kumpulan pembangunan produk membangunkan produk sebenar pada masa yang singkat, meminimumkan kos pembangunan serta mengurangkan keperluan untuk mereka bentuk semula produk. Alat sokongan ini telah diaplikasikan pada sebuah industri automotif tempatan dan hasil kajian menunjukkan bahawa alat sokongan tersebut telah berjaya melakukan analisis masa kitar dan tahap penggunaan pada sistem pembuatan sedia ada. Pada jumlah keluaran 44 komponen/jam dan saiz sesekumpul 80, hasil analisis menunjukkan tahap penggunaan pada 98% dengan masa kitar 17.8 jam bagi pemprosesan gabungan produk yang terdiri daripada komponen dengan reka bentuk baru dan reka bentuk sedia ada.

 

Kata kunci: Kapasiti pengeluaran; masa kitar; teori baris gilir; reka bentuk produk; sistem pembuatan


 

ABSTRACT

 

This paper discusses the development of a decision support tool based on the queuing theory which was linked to manufacturing cycle time information. With the use of this tool, the effects of product design to the capacity and manufacturing cycle time of an existing manufacturing system can be determined. The decision support tool enabled the product design team to develop products in a shorter lead time with reduced cost, while minimising redesign during the design development process. The tool has been applied to a local automotive industry and results from the study showed that the tool has been successful in analysing cycle time and utilisation of the existing manufacturing system. For a throughput of 44 parts/hour and batch size 80, results from the analysis show a utilisation rate of 98% and cycle time of 17.8 hours, for the production of mixed products that comprised parts with new and existing design.

 

Keywords: Production capacity; cycle time; queuing theory; product design; manufacturing system

 

 

REFERENCES

 

Ahmadi, R. & Wang, R.H. 1999. Managing development risk in product design process. Operations Research 47(2): 235-246.

Balachandra, R. 1991. Some strategic aspects of faster new product introduction. Engineering Management Conference 226-229.

Bermon, S., Feigin, G. & Hood, S. 1995. Capacity analysis of complex manufacturing facilities. Proceedings of the 34th Conference on Decision and Control 1935-1940.

Bralla, J.G. 1996. Design for Excellence. USA: McGraw-Hill Inc.

Burhanuddin S. & Randhawa, S.U. 1992. A framework for integrating manufacturing process design and analysis. Computers and Industrial Engineering 23(1-4): 27-30.

Chincholkar, M.M. 2002. Design for Production: Using Manufacturing Cycle Time Information to Improve Product Development. Maryland: Institute for Systems Research.

Elhafsi, M. & Rolland, E. 1999. Negotiating price and delivery date in a stochastic manufacturing environment. IIE Transactions 31: 255-270.

Govil, M. 1999. Integrating product design and production: Designing for time-to- market. Tesis PhD. USA: University of Maryland.

Hopp, W.J. & Spearman, M.L. 2000. Factory Physics. Second edition. Boston: Irwin/McGraw Hill.

Ingress Precision. 2004. Ahead of Technology. Cetakan Brosur.

Koo, P.H., Moodie, C.L. & Tavalage, J.J. 1995. A spreadsheet model approach for integrating static capacity planning and stochastic queuing models. International Journal of Production Research 3(5): 1369-1385.

Singh, N. 1996. Systems Approach to Computer-integrated Design and Manufacturing. New York: John Wiley and Sons.

Soundar, P. & Bao, H.P. 1994. Concurrent design of products for manufacturing system performance. Proceedings of the IEEE 1994 International Engineering Management Conference 233-240.

Suri, R. & Diehl, G.W. 1985. MANUPLAN, A precursor to simulation for complex manufacturing systems. Proceeding of the Winter Simulation Conference 411-428.

Taylor, D.G., English, J.R. & Graves, R.J. 1994. Designing new products: Compatibility with existing product facilities and anticipated product mix. Integrated Manufacturing Systems 5(4/5): 13-21.

Vollmann, T.E., Berry, W.L. & Whybark, D.C. 1997. Manufacturing Planning and Control Systems. Fourth edition. New York: Irwin/McGraw-Hill.

Wei, Y. 2001. Concurrent design for optimal quality and cycle Time. Tesis PhD. Massachusets: Department of Mechanical Engineering, Massachusetts Institute of Technology.

Wei, Y. & Thornton, A.C. 2002. Concurrent design for optimal production performance. Paper DETC2002/DFM-34163 in CD-ROM Proceedings of 2002 ASME Design Engineering Technical Conference.

 

*Corresponding author; email: chase@vlsi.eng.ukm.my

 

 

 

 

previous