Sains Malaysiana 39(1)(2010): 83–86
Microcrystallite Dimension and Total Active Surface Area of Carbon
Electrode from Mixtures of Pre-Carbonized Oil Palm Empty Fruit
Bunches and Green Petroleum Cokes
(Dimensi Mikrokristalit dan Luas Permukaan Aktif Total Karbon Elektrod daripada
Campuran Serbuk Karbon Swa-merekat dan Kok Hijau Petroleum)
Awitdrus & Erman Taer
Department of Physics, Faculty of Mathematics and Natural Sciences
University of Riau, Pekanbaru, Riau, Indonesia
Mohamad Deraman*, Ibrahim Abu Talib, Ramli Omar, Mohd. Hafizuddin Hj. Jumali & Mansor Mohd. Saman
School of Applied Physics, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
Received: 7 August 2008 / Accepted: 6 July 2009
ABSTRACT
Carbon pellets (CP) were prepared from the green pellets (GP) containing mixtures of pre-carbonized oil palm empty fruit bunches (SACG) and Green Petroleum Cokes (GPC), with the weight percentages (x) of SACG in the samples at 10%, 30%, 50%, 70% and 90%. Carbonization process to produce the CP was conducted up to 900oC using a multi steps heating profile. The interlayer spacing (d200 and d100), stack height (Lc), stack width (La,) and effective dimension L of the turbostratic crystallites (microsrystallite) in the CPs were estimated from X-ray diffraction data; d200, d100, La, L increased and Lc decreased with increasing weight percentage of SACG. The total surface area of active material of the CP (Atot) with thickness, t, estimated from Lc was found to follow the equation, Atot = [4.8086 – 0.0083x]1010 t, indicating a significant influence of the SACG content in the mixture of the green body.
Keywords: Carbon pellet; green petroleum cokes; microcrystallite; active surface; self adhesive carbon grain
ABSTRAK
Pelet karbon (PK) telah disediakan daripada pelet jasad hijau (PJH) yang mengandungi campuran serbuk karbon swa-merekat (SKSM) dan kok hijau petroleum (KHP), dengan peratus berat (x) SKSM dalam sampel sebanyak 10%, 30%, 50%, 70% dan 90%. Proses karbonsasi untuk menghasilkan PK dijalankan pada suhu 900oC dengan menggunakan profil pemanasan berperingkat. Jarak antara lapisan (d200 dan d100), tinggi timbunan (Lc), lebar timbunan (La) dan dimensi efektif (L) bagi kristalit turbostratik (mikro kristalit) dalam PK dihitung menggunakan data belauan sinar-X; peningkatan peratus berat SKSM menyebabkan d200, d100, La, L meningkat sedangkan Lc menurun. Luas total permukaan bahan aktif (Atot) PK dengan ketebalan t, yang dihitung menggunakan data Lc didapati mematuhi persamaan Atot = [4.8086 – 0.0083x]1010 t, yang menunjukan pengaruh bahan kandungan SKSM di dalam PK adalah signifikan.
Kata kunci: Kok hijau petrolium; mikrokristalit; permukaan aktif; pelet karbon; serbuk karbon swa-merekat
REFERENCES
Coutinho, A.R., Rocha, J.D. & Luengo, C.A. 2000. Preparing and characterizing biocarbon electrodes. Fuel Processing Technology 67: 93-102.
Deraman, M., Zakaria, S., Omar, R. & Aziz, A.A. 2000. Electrical conductivity of carbon pellet from mixtures of pyropolymer from oil palm bunch and cotton cellulose. Jpn. J. Appl. Phys. 39(12A): L1236-L1238.
Deraman, M., Omar, R., Zakaria, S., Mustapa, I.R., Talib, M., Alias, N. & Jaafar, R. 2002. Electrical and mechanical properties of carbon pellets from acid (HNO3) treated self-adhesive carbon grain from oil palm empty fruit bunch. Journal of Materials Science 37: 3329-3335.
Dresselhaus, M.S., Fung, A.W.P., Rao, A.M., diVittorio, S.L., Kuriyama, K., Dresselhaus, G. & Endo, M. 1992. New characterization techniques for activated carbon fibers. Carbon 30: 1065.
Emmenegger, Ch., Mauron, Ph., Sudan, P., Wenger, P., Herman ,V., Gallay, R. & Zuttel, A. 2003. Investigation of electrochemical double layer capacitors (EDLC) electrodes based on carbon nanotubes and activated carbon. Journal of Power Sources 124: 321-329.
Emmerich, F.G. & Luengo, C.A. 1993. Young modulus of heat treated carbon: A theory for nongraphitizing carbons. Carbon 31(2): 333-339.
Kaneko, K., Ishii C., Ruike M. & Kuwabara, H. 1992. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbon. Carbon 30(7): 1075-1088.
Klug, H.P. & Elexander, L.E. 1970. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous. New York: John Wiley and Sons.
Kumar, K., Saxena, R.K., Kothari, R.D., Suri, K., Kaushik, N.K. & Bohra, J.N. 1997. Correlation between adsorption and x-ray diffraction studies on viscose rayon based activated carbon cloth. Carbon 35(12): 1842-1844.
Marsh, H. & Rodrigues-Reinoso, F. 2006. Activated Carbon. Amsterdam: Elsevier Ltd.
Yang, S., Hu, H. & Che, G. 2002. Preparation of carbon adsorbents with high surface area and a model for calculating surface area. Carbon 40(3): 277-284.
*Corresponding author; email: madra@ukm.my