Sains Malaysiana 39(1)(2010): 21–30
Kandungan dan Sumber Alkohol Lemak di dalam Sedimen
Muara di Sungai Kapar, Selangor
(Composition and Sources of Fatty Alcohols in Estuarine Sediments of Sungai Kapar, Selangor)
Norfariza Humrawali, Yeoh Lee Kwan, Mohd Talib Latif & Masni Mohd Ali*
Pusat Pengajian Sains Sekitaran dan Sumber Alam
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor D.E., Malaysia
Mohamad Pauzi Zakaria
Jabatan Sains Alam Sekitar
Fakulti Pengajian Alam Sekitar, Universiti Putra Malaysia
43400 Serdang, Selangor E., Malaysia
Received: 29 January 2009 / Accepted: 27 May 2009
ABSTRAK
Kandungan sebatian alkohol lemak di dalam tujuh sampel sedimen permukaan dari muara Sungai Kapar, Selangor telah dikenal pasti menggunakan gas kromatografi-spektrometri jisim (GC-MS) dan hasilnya menunjukkan wujudnya 13 sebatian alkohol lemak (C12- C24) termasuk enam sebatian bercabang (-iso dan -anteiso) hadir. Secara keseluruhannya, sampel yang dikaji terdiri daripada 65% alkohol lemak rantai pendek (C12- C20) yang dihasilkan oleh organisma marin manakala 14% adalah alkohol lemak rantai panjang (C21- C24) yang berpunca daripada tumbuhan terestrial dan selebihnya merupakan sebatian bercabang yang dihasilkan oleh proses metabolisme bakteria. Sebatian C16 mendominasi kesemua stesen pensampelan dengan julat kepekatan 29.69-164.35 μgg-1 berat kering iaitu 32% daripada jumlah keseluruhan alkohol lemak. Nisbah antara alkohol lemak rantai pendek dan rantai panjang [Σ(C12- C20)/Σ(C21- C22)] bagi setiap stesen pensampelan memberikan nilai >1, menunjukkan kandungan alkohol lemak rantai pendek sumber marin adalah lebih tinggi daripada kandungan alkohol lemak rantai panjang. Indeks Sumber Alkohol (ASI) pula diguna untuk menganggar kesan input alkohol lemak terestrial ke dalam sedimen marin berdasarkan nisbah alkohol lemak C22/C14 menunjukkan stesen Kp1, Kp2, Kp5 dan Kp6 mempunyai nilai >1; iaitu kandungan C22 adalah lebih tinggi berbanding C14. Walau bagaimanapun, nisbah C22/C16 memberikan hasil yang sebaliknya dengan kesemua stesen didominasi oleh C16 berbanding C22. Kajian ini menunjukkan alkohol lemak (C12- C20) terutamanya sebatian C16 mendominasi kawasan muara Sungai Kapar, Selangor berbanding alkohol lemak rantai panjang (C21- C24).
Kata kunci: alkohol lemak; Sungai Kapar
ABSTRACT
A total of 13 fatty alcohols (C12- C24) including six branched compounds have been identified in seven surface sediment samples taken from Sungai Kapar, Selangor using computerized gas chromatography-mass spectrometry (GC-MS). Generally 65% of total fatty alcohols determined were short chain compounds (C12- C20) derived from marine organisms, 14% were long chained compounds (C21- C24) input of terrestrial plants and the rest were branched compounds from bacterial activity. C16 compound dominated all the sampling stations with concentrations ranged from 29.69 to 164.35 μgg-1 dry weight which constitute 32% of total fatty alcohols. Short chain/long chain fatty alcohols ratio [Σ(C12- C20)/Σ(C21- C22)] of each sampling stations had the value >1; indicating high content of short chain compounds from marine sources. Meanwhile, Alcohol Source Index (ASI) calculated using C22/C14 and C22/C16 ratios. C22/C14 ratio showed that stations Kp1, Kp2, Kp5 and Kp6 had a value >1 indicating the amount of C22 was higher than C14. Ratio of C22/C16 showed that all the sampling stations dominated by C16 compared to C22. The estuary of Sungai Kapar, Selangor was dominated by short chain fatty alcohols (C12- C20) especially C16 compound rather than long chain fatty alcohol (C21- C24).
Keywords: fatty alcohol; Sungai Kapar
REFERENCES
A.L.& Readman, J.W. 2004. Sterols as markers of sewage contamination in a tropical urban estuary (Guanabara Bay, Brazil): space-time variations. Estuarine, Coastal and Shelf Science 60: 587-598.
Duan, Y. 2000. Organic geochemistry of recent marine sediments from the Nansha Sea, China. Organic Geochemistry 31: 159-167.
Ficken, K.J., Li, B., Swain, D.L. & Eglinton, G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31: 745-749.
Grimalt, J.O. & Albaiges, J. 1990. Characterization of the depositional environments of the Ebro Delta (western Mediterranean) by the study of sedimentary lipid markers. Marine Geology 95: 207-224.
Heiri, O., Lotter, A.F. & Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101-110.
Logan, G.A., Fredericks, D.J., Smith, C. & Heggie, T. 2001. Sources of organic matter in Wallis Lake. AGSO Research Newsletter 15-20.
LY¨, X. & Zhai S. 2006. Distribution and sources of organic biomarkers in surface sediments from the Changjiang (Yangtze River) Estuary, China. Continental Shelf Research 26: 1-14.
Mannino, A. & Harvey, H.R. 1999. Lipid comparison in particulate and dissolved organic matter in the Delaware Estuary: Sources and diagenetic patterns. Geochimica et Cosmochimica Acta 63: 2219-2235.
Masni, M.A. & Mudge, S.M . 2006. Cluster analysis in lipid biomarker studies: A case of Clyde Sea. Sains Malaysiana 35(2): 41-47.
Mudge, S.M. & Duce, C.E. 2005. Identifying the source, transport path and sinks of sewage derived organic matter. Environmental Pollution 136: 209-220.
Mudge, S.M. & Norris, C.E. 1997. Lipid biomarkers in the Conwy Estuary (North Wales, U.K.): a comparison between fatty alcohols and sterols. Marine Chemistry 57: 61-84.
Mudge, S.M. & Seguel, C.G. 1999. Organic contamination of San Vicente Bay Chile. Marine Pollution Bulletin 38: 1011-1021.
Ni, H.-G., Lu, F.H., Luo, X.-L., Tian, H.-Y. & Zeng, E.Y. 2008. Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China. Marine Pollution Bulletin 56: 1150-1157.
Ogura, K., Machihara, T. & Takada, H. 1990. Diagenesis of biomarkers in Biwa Lake sediments over 1 million years. Organic Geochemistry 16: 805-813.
Pagani, M., Freeman, K.H. & Arthur, M.A. 1999. Isotope analyses of molecular and total organic carbon from Miocene sediments. Geochimica et Cosmochimica Acta 64: 37-49.
Parameswaran P.S., Das B. & Kamat S.Y. 1994. Lipid contents of the sponge Haliconia sp. Indian Journal of Chemistry 33: 99-101.
Pearson, E.J., Farrimond, P. & Juggins, S. 2007. Lipid geochemistry of lake sediments from semi-arid Spain: Relationships with source inputs and environmental factors. Organic Geochemistry 38: 1169-1195.
Seguel, C.G., Mudge, S.M., Salgado, C. & Toledo, M. 2001. Tracing sewage in the marine environment: Altered signatures in Concepci—n Bay, Chile. Water Resources 17: 4166-4174.
Seki, O., Yoshikawa, C., Nakatsuka, T., Kawamura, K. & Wakatsuchi, M. 2006. Fluxes, source and transport of organic matter in the western sea of Okhotsk: stable carbon isotopic ratios of n-alkanes and total organic carbon. Deep-Sea Research Part I: Oceanographic Research Papers 153: 253-270.
Shi, W., Sun, M.Y., Molina, M. & Hodson, R.E. 2001. Variability in the distribution of lipid biomarkers and their molecular isotopic composition in Altamaha estuarine sediments : implications for the relative contribution of organic matter from various sources. Organic Geochemistry 32: 453-467.
Smith, S.V. & Hollibaugh, J.T. 2008. Coastal metabolism and the oceanic organic carbon balance. Reviews of Geophysics 31(1): 75-89.
Treignier, C., Derenner, S. & Saliot, A. 2006. Terrestrial and marine n-alcohol inputs and degradation processes relating to a sudden turbidity current in the Zaire canyon. Organic Geochemistry 37: 1170-1184.
Volkman, J.K., Barrett, S.M. & Blackburn, S.I. 1999. Eustigmatophyte microalgae are potential sources of C29 sterols, C22- C28 n-alcohols and C28- C32 n-alkyl diols in freshwater environments. Organic Geochemistry 30: 307-318.
Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E.L. & Gelin, F. 1998. Microalgal biomarkers: A review of recent research developments. Organic Geochemistry 29: 1163-1998.
Yunker, M.B., Macdonald, R.W., Veltkamp, D.J. & Cretney, W.J. 1995. Terrestrial and marine biomarkers in a seasonally ice-covered Arctic estuary – integration of multivariate and biomarker approaches. Marine Chemistry 49: 1-50
*Corresponding author; email: masni@ukm.my