Sains Malaysiana 39(2)(2010): 169–174

 

Correlation between Hotspots and Air Quality in Pekanbaru, Riau, Indonesia in 2006-2007

 

(Korelasi antara Titik Panas dengan Kualiti Udara di Pekanbaru, Riau, Indonesia pada 2006-2007)

 

ADELIN ANWAR1, LIEW JUNENG1, MOHAMED ROZALI OTHMAN2 & MOHD TALIB LATIF*, 1

1School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

2School of Chemical Sciences and Food Technology

Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Received: 6 May 2009 / Accepted: 7 July 2009

 

ABSTRACT

 

Biomass burning is one of the main sources of air pollution in South East Asia, predominantly during the dry period between June and October each year. Sumatra and Kalimantan, Indonesia, have been identified as the regions connected to biomass burning due to their involvement in agricultural activities. In Sumatra, the Province of Riau has always been found to have had the highest number of hotspots during haze episodes. This study aims to determine the concentration of five major pollutants (PM10, SO2, NO2, CO and O3) in Riau, Indonesia, for 2006 and 2007. It will also correlate the level of air pollutants to the number of hotspots recorded, using the hotspot information system introduced by the Malaysian Centre for Remote Sensing (MACRES). Overall, the concentration of air pollutants recorded was found to increase with the number of hotspots. Nevertheless, only the concentration of PM10 during a haze episode is significantly different when compared to its concentration in non-haze conditions. In fact, in August 2006, when the highest number of hotspots was recorded the concentration of PM10 was found to increase by more than 20% from its normal concentration. The dispersion pattern, as simulated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), showed that the distribution of PM10 was greatly influenced by the wind direction. Furthermore, the particles had the capacity to reach the Peninsular Malaysia within 42 hours of emission from the point sources as a consequence of the South West monsoon.

 

Keywords: Air quality; biomass burning; HYSPLIT model; hotspots

 

ABSTRAK

 

Pembakaran biojisim merupakan antara punca utama pencemaran udara di Asia Tenggara, terutamanya pada musim kering antara Jun hingga Oktober setiap tahun. Sumatera dan Kalimantan, Indonesia, telah dikenal pasti sebagai rantau yang dikaitkan dengan pembakaran biojisim yang disebabkan oleh aktiviti pertanian. Di Sumatera, Propinsi Riau, merupakan daerah yang telah dikenal pasti sebagai daerah yang merekodkan jumlah titik panas yang paling tinggi semasa episode jerebu. Kajian ini bertujuan untuk menentukan kepekatan lima parameter utama bahan pencemar udara (PM10, SO2, NO2, CO dan O3) di Daerah Riau, pada tahun 2006 dan 2007. Aras bahan tersebut telah dikorelasi dengan jumlah titik panas yang direkodkan melalui sistem informasi titik panas yang telah diperkenalkan oleh Pusat Remote Sensing Negara, Malaysia (MACRES). Keseluruhannya, kepekatan bahan pencemar udara yang direkodkan didapati meningkat dengan peningkatan jumlah titik panas yang direkodkan. Walau bagaimanapun, hanya kepekatan PM10 yang menunjukkan perbezaan yang signifikan semasa episod jerebu berbanding dengan masa di mana tiada jerebu berlaku. Malahan pada bulan Ogos 2006, semasa jumlah titik panas direkodkan pada jumlah yang tertinggi, didapati kepekatan PM10 meningkat sebanyak 20% berbanding kepekatan yang biasa direkodkan. Corak sebaran yang disimulasi menggunakan Model Trajektori Integrasi Lagrangian Hibrid Partikel Tunggal (HYSPLIT) menunjukkan taburan PM10 amat dipengaruhi oleh arah pergerakan angin. Tambahan lagi, pergerakan partikel berkeupayaan untuk sampai ke Semenanjung Malaysia dalam tempoh 42 jam dari titik sumber disebabkan oleh monsun Barat Daya.

 

Kata kunci: Kualiti udara; model HYSPLIT; pembakaran biojisim; titik panas

 

REFERENCES

 

Byron, N. 2004. Managing smoke: Bridging the gap between policy and research: Or “what to do while it is raining outside...” Agriculture, Ecosystems and Environment 104: 57-62.

Chin, L.S. 2001. Satelite detection of forest fires and burn scars. Workshop on Minimizing the Impact of Forest Fire on Biodiversity in Asean, edited by M. Radojevic. Brunei Darusalam, Nova Science Publishers.

Groot, W.J.D., Field, R.D., Brady, M.A., Roswintiarti, O. & Mohamad, M. 2007. Development of the Indonesian and Malaysian fire danger rating systems. Mitigation and Adaptation Strategies for Global Change 12: 165-180.

Heil, A. & Goldammer, J.G. 2001. Smoke-haze pollution: A review of the 1997 episode in Southeast Asia. Reg Environ Change 2: 24-37.

Jepson, P., Jarvie, J.K., MacKinnon, K. & Monk, K.A. 2001. The end for Indonesia’s lowland forests?. Science 292: 859-861.

Jones, D.S. 2006. ASEAN and transboundary haze pollution in Southeast Asia. Asia Europe Journal 4: 431-446.

Kansal, A. 2009. Sources and reactivity of NMHCs and VOCs in the atmosphere: A review. Journal of Hazardous Materials 166: 17-26.

Ketterings, Q. M., Tri Wibowo, T., Van Noordwijk, M. & Penot, E. 1999. Farmers’ perspectives on slash-and-burn as a land clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra, Indonesia. Forest Ecology and Management 120: 157-169.

Kita, K., Fujiwara, M. & Kawakami, S. 2000. Total ozone increase associated with forest fires over the Indonesian region and its relation to the El Nino-Southern oscillation Atmospheric Environment 34: 2681-2690.

Mahmud, M. 2005. Active fire and hotspots emissions in Peninsular Malaysia during 2002. Geografia 1: 1-17.

Mahmud, M. 2008. Greenhouse gas emission from a land use change activity during haze episode in Southeast Asia. Jurnal e-Bangi3: 1-15.

Miettinen, J. & Liew, S.C. 2005. Connection between fire and land cover change in Southeast Asia: a remote sensing case study in Riau, Sumatra. International Journal of Remote Sensing 26: 1109-1126.

Murdiyarso, D. & Adiningsih, E. S. 2007. Climate anomalies, Indonesian vegetation fires and terrestrial carbon emissions Mitigation and Adaptation Strategies for Global Change 12: 101-112.

Ostermann, K. & Brauer, C. 2001. Air quality haze episodes and its impact on health. Drinking water from forests and grasslands: a synthesis of the scientific literature (G. E. Dissmeyer, ed.). Asheville, NC U.S. Department of Agriculture, Forest Service, Southern Research Station.

Page, S. E., Siegert, F., Rieley, J. O., Boehm, H.-D. V., Jaya, A. & Limin, S. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420: 61-65.

Saharjo, B. H. 2007. Shifting cultivation in peatlands Mitigation and Adaptation Strategies for Global Change 12(1): 135-146.

Saharjo, B. H. & Munoz, C. P. 2005. Controlled burning in peat lands owned by small farmers: A case study in land preparation Wetlands Ecology and Management 13: 105-110

Suyanto, S., Applegate, G., Permana, R. P., Khususiyah, N. & Kurniawan, I. 2004. The role of fire in changing land use and livelihoods in Riau-Sumatra. Ecology and Society 9: 15.

 

*Corresponding author; email: talib@ukm.my

 

 

previous