Sains Malaysiana 39(2)(2010): 219–226

 

Penentuan Kandungan dan Penilaian Risiko Kesihatan Hidrokarbon Polisiklik Aromatik dalam Tisu Ikan dari Pulau Perhentian, Malaysia

(Content Determination and Health Risk Assessment of Polycyclic Aromatic Hydrocarbon in Fish Tissue Samples from Perhentian Island, Malaysia)

 

Sim Khay Tien1, Lee Yook Heng* 2, Mazlan Abd. Ghaffar1

Mohd. Pauzi Zakaria3 & Salmijah Surif1

1Pusat Pengajian Sains Sekitaran & Sumber Alam Fakulti Sains & Teknologi

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia

 

2Pusat Pengajian Sains Kimia & Teknologi Makanan, Fakulti Sains & Teknologi

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia

 

3Jabatan Alam Sekitar, Universiti Putra Malaysia, 43400 Serdang, Selangor D.E., Malaysia

 

Received: 30 July 2008 / Accepted: 08 September 2009

 

 

ABSTRAK

 

Kandungan hidrokarbon polisiklik aromatik (PAH) dalam tiga spesies ikan yang berbeza tabiat pemakanan dan habitat, iaitu Lolong (Selar boops), Kerisi (Nemipterus peronii) dan Mengkarong (Trachinocephalus myops) dari luar pantai Pulau Perhentian, Malaysia ditentukan. Tiga individu daripada setiap spesies dipilih secara rawak dan kandungan 10 sebatian PAH diukur, iaitu fenantrena, antrasena, fluorantena, pirena, benzo(a)anthracene benzo(a)antrasena, krisena, benzo(a)fluorantena, benzo(k)fluorantena, benzo(e)pirena dan dibenzo(a,h)antrasena dalam otot ikan ditentukan. Pengekstrakan PAH menggunakan kaedah Soxhlet dan kandungannya diukur dengan kromatografi gas - spektrometri jisim (GC-MS). Jumlah PAH dalam tisu ikan yang dikaji adalah pada julat 17.89 – 42.18 ng/g berat basah dan 393.98 – 511.07 ng/g mengikut berat lipid. Kandungan PAH dalam tisu jenis ikan menurut berat basah adalah Mengkarong (42.18 ng/g)> Lolong (25.61 ng/g)> Kerisi (17.89 ng/g), sementara menurut berat lipid ialah Kerisi (511.07 ng/g)> Mengkarong (409.50 ng/g)> Lolong (393.98 ng/g). Otot Kerisi mengandungi kandungan lipid paling sedikit, iaitu 3.5 % berbanding dengan Lolong (6.5 %) dan Mengkarong (10.3 %). Tidak ada penumpukan PAH yang jelas dalam lipid tisu ikan (kolerasi Pearson, p>0.05) dan ketiga-tiga spesies ikan tidak menunjukkan kandungan PAH yang berbeza (ANOVA, p>0.05). Berdasarkan kadar pengambilan ikan pada 142.2 g/hari, pengiraan kepekatan potensi setara (PEC), iaitu nilai potensi karsinogenisiti sebatian PAH, ketiga-tiga spesies ikan adalah pada julat 0.41 – 0.63 ng/g berat basah. Nilai ini lebih rendah daripada nilai garis panduan yang ditetapkan oleh USEPA, iaitu 0.67 ng/g berat basah.

 

Kata kunci: Hidrokarbon polisiklik aromatic; kepekatan potensi setara; penilaian risiko; tisu ikan

 

ABSTRACT

 

The concentration of polycyclic aromatic hydrocarbon (PAH) in three fish species with different feeding habits and habitat i.e. Lolong (Selar boops), Kerisi (Nemipterus peronii) dan Mengkarong (Trachinocephalus myops) from offshore of Perhentian Island, Malaysia was determined. Three individuals from each species were taken at random and the PAHs contents were determined in the muscles. Ten PAH compounds, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(e)pyrene and dibenzo(a,h)anthracene were determined. PAH in fish tissues was extracted using Soxhlet method and detected using gas chromatography – mass spectrometry (GC-MS). The level of PAH in fish tissue ranged from 17.89 – 42.18 ng/g wet weight and 393.98 – 511.07 ng/g lipid weight. The order of PAH concentration in wet weight was Kerisi (511.07 ng/g)> Mengkarong (409.50 ng/g)> Lolong (393.98 ng/g) but in terms of lipid weight, the order was Kerisi (511.07 ng/g)> Mengkarong (409.50 ng/g)> Lolong (393.98 ng/g). Kerisi has the lowest lipid content of 3.5% compared to Lolong (6.5 %) and Mengkarong (10.3 %). No obvious significant difference (p>0.05) of PAH levels in three fish spesies was observed (ANOVA, p>0.05). There was no significant relationship between lipid content and PAH accumulation in fish. Based on fish consumption rate of 142.2 g/day, the Potency Equivalent Concentration (PEC), which is a carcinogenic potency value for PAH, was found to be ranged from 0.41 – 0.63 ng/g wet weight in all three species of fish. This value is below the limit set by USEPA, which is 0.67 ng/g wet weight for human consumption.

 

Keywords: Fish tissue; polycyclic aromatic hydrocarbon; potency equivalent concentration; risk assessment

 

REFERENCES

 

Allen, G. 2000. Marine Fishes of South East Asia, A Field Guide for Anglers and Divers. Singapore: Periplus Editions Ltd.

Binelli, A. & Provini, A. 2003. POPs in edible clams from different Italian and European markets and possible human health risk. Marine Pollution Bulletin 46: 879-886.

Binelli, A. & Provini, A. 2004. Risk for human health of some POPs due to fish from Lake Iseo. Ecotoxicology and Environmental Safety 58: 139-145.

Burgess, R.M., Ahrens, M.J. & Hickey, C.W. 2003. Geochemistry of PAHs in aquatic environments: source, persistence and distribution. Dlm. PAHs: An Ecotoxicological Perspective, Douben, P.E.T. New York: John Wiley & Son Inc.

Cheung, K.C., Leung, H.M., Kong, M.H. & Wong, M.H. 2006. Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment Chemosphere June: 1-9.

FAO (Food and Agriculture Organization of United Nations). 1995. The State of World Fisheries and Aquaculture. Rome: FAO Fisheries Department.

Fern‡ndez, P., Grimalt, J. & Vilanova, R. 2002. Atmospheric gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe. Environ. Sci. Technol. 36: 1162-1168.

Fernandez, P., Vilanova, R., Mart’nez, C., Appleby, P. & Grimalt, J. 2000. The historical record of atmospheric pyrolitic pollution over Europe registered in sedimentary PAH from remote mountain lakes. Environ. Sci. Technol. 34: 1906 -1913.

Hong, H., Xu, L., Zhang, L., Chen, J.C., Wong, Y.S. & Wan, T.S.M. 1995. Environmental fate and chemistry of organic pollutants in sediments of Xiamen and Victoria Harbours. Marine Pollution Bulletin 31: 229-236.

Howsan, M. & Jones, K. 1998. Sources of PAHs in the environment. Dlm. Handbook of Environmental Chemistry. Neilson, A.H. (ed.). Berlin: Springer-Verlag.

Kong, K.Y., Cheung, K.C., Wong, C.K.C. & Wong, M.H. 2005. The residual dynamic of polycyclic aromatic hydrocarbons and organochlorine pesticides in fishponds of the Pearl River Delta, South China. Water Research 39: 1831-1843.

Lage Yusty, M.A. & Cortizo Davina, J.L. 2005. Supercritical fluid extraction and high performance liquid chromatography – fluorescence detection method for polycyclic aromatic hydrocarbons investigation in vegetable oil. Food Control 16: 59-64.

Nisbet, I.C.T. & Rasmussen, J.B. 1992. Toxic equivalent factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharm. 16: 290-300.

Pena, T., Pensado, L., Casais, C., Mejuto, C., Phan-Tan-Luu, R. & Cela, R. 2006. Optimization of a microwave-assisted extraction method for the analysis of polycyclic aromatic hydrocarbons from fish samples. Journal of Chromatography A 1121: 163-169.

Philips, D.J.H., 1980. Quantitation Aquatic biological Indicators: Their Use to Monitor Trace Metals and Organochlorine Pollution. United Kingdom: Applied Science Publishers Ltd.

Ramachandran, S.D., Sweezey, M.J., Hodson, P.V., Boudreau, M., Courtenay, S.C., Lee, K., King, T. & Dixon, J.A. 2006. Influence of salinity and fish species on PAH uptake from dispersed crude oil. Marine Pollution Bulletin (February): 1-8.

Russell, F., Taberski, K., Lamerdin, S., Johnson, E., Clark, R.P., Downing, J.W., Newman, J. & Petreas, M. 1997. Organochlorines and other environmental contaminants in muscle tissues of sportfish collected from San Francisco Bay. Marine Pollution Bulletin 34: 1058- 1071.

Sericano, J. L., Brooks, J. M., Champ, M. A., Kennicutt II, M.C., Makeyev, V. V. 2001. Trace contaminat concentration in Kara Sea and its Adjacent Rivers, Russia.  Marine Pollution Bulletin 42:1017-1030.

Tolosa, I., Bayona, J.M. & Albiges, J. 1996. Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in NW Mediterranean sediments: Spatial and temporal variability, fluxes and budget. Environmental Science Technology 30: 2495-2503.

USEPA, US Environmental Protection Agency. 1989. Risk assessment guidance for superfund . Human health evaluation manual. Washington, D.C.: US Environmental Protection Agency, Office of Emergency and Remedial Response.

USEPA, US Environmental Protection Agency. 1993. Dieldrin (CASRN 60-57-1): US Environmental Protection Agency, Office of Research and Development, Integrated Risk Information System. http://www.epa.gov/iris/subst/0225.htm#carc. [23 November 2006]

USEPA, US Environmental Protection Agency. 1996. Method 3540C: Soxhlet extraction. Washington, D.C.: US Environmental Protection Agency.

USEPA, US Environmental Protection Agency. 2000. Guidance for Assessing Chemical Contaminant, Data for Use in Fish Advisories: Fish Sampling and Analysis. Washington: Office of Water.

Vilanova, R., Fern‡ndez, P., Mart’nez, C. & Grimalt, J. 2001. Polycyclic aromatic hydrocarbons in remote mountain lake waters. Water Research 35: 3916-3926.

Vives, I & Grimalt, J.O. 2002. Method for integrated analysis of polycyclic aromatic hydrocarbons and organochlorine compounds in fish liver. Journal of Chromatography B 768: 247-254.

Wong, M.H. & Poon, B.H.T. 2003. Sources, fates and effects of persistent organic pollutants in China, with emphasis on the Pearl River Delta. Dlm. The Handbooks of Environmental Chemistry. Fiedler, H. hlm. 355-369. Berlin: Springer.

Zakaria, M. P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, I., Kouno, E. & Kumata, H. 2002. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environ. Sci. Technol. 36: 1907-1918.

 

*Corresponding author; email: yhl1000@ukm.my

 

 

 

previous