Sains Malaysiana 39(2)(2010): 219–226
Penentuan Kandungan dan Penilaian Risiko
Kesihatan Hidrokarbon Polisiklik Aromatik dalam Tisu Ikan dari Pulau
Perhentian, Malaysia
(Content
Determination and Health Risk Assessment of Polycyclic Aromatic Hydrocarbon in
Fish Tissue Samples from Perhentian Island, Malaysia)
Sim Khay Tien1, Lee Yook Heng* 2, Mazlan Abd. Ghaffar1
Mohd. Pauzi Zakaria3 & Salmijah Surif1
1Pusat Pengajian Sains Sekitaran & Sumber Alam Fakulti Sains
& Teknologi
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor D.E., Malaysia
2Pusat Pengajian Sains Kimia & Teknologi Makanan, Fakulti
Sains & Teknologi
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor D.E., Malaysia
3Jabatan Alam Sekitar, Universiti Putra Malaysia, 43400 Serdang,
Selangor D.E., Malaysia
Received: 30 July 2008 / Accepted: 08
September 2009
ABSTRAK
Kandungan
hidrokarbon polisiklik aromatik (PAH) dalam tiga spesies ikan yang berbeza tabiat pemakanan dan
habitat, iaitu Lolong (Selar boops), Kerisi (Nemipterus
peronii) dan Mengkarong (Trachinocephalus myops) dari luar pantai
Pulau Perhentian, Malaysia ditentukan. Tiga individu daripada setiap spesies
dipilih secara rawak dan kandungan 10 sebatian PAH diukur, iaitu fenantrena, antrasena, fluorantena, pirena,
benzo(a)anthracene benzo(a)antrasena, krisena, benzo(a)fluorantena,
benzo(k)fluorantena, benzo(e)pirena dan dibenzo(a,h)antrasena dalam otot ikan
ditentukan. Pengekstrakan PAH menggunakan
kaedah Soxhlet dan kandungannya diukur dengan kromatografi gas - spektrometri
jisim (GC-MS). Jumlah PAH dalam tisu ikan yang dikaji adalah pada julat 17.89 – 42.18 ng/g
berat basah dan 393.98 – 511.07 ng/g mengikut berat lipid. Kandungan PAH dalam tisu jenis ikan menurut berat basah adalah Mengkarong
(42.18 ng/g)> Lolong (25.61 ng/g)> Kerisi (17.89 ng/g), sementara menurut
berat lipid ialah Kerisi (511.07 ng/g)> Mengkarong (409.50 ng/g)> Lolong
(393.98 ng/g). Otot Kerisi mengandungi kandungan lipid paling sedikit, iaitu
3.5 % berbanding dengan Lolong (6.5 %) dan Mengkarong (10.3 %). Tidak ada
penumpukan PAH yang jelas dalam lipid tisu
ikan (kolerasi Pearson, p>0.05) dan ketiga-tiga spesies ikan tidak
menunjukkan kandungan PAH yang
berbeza (ANOVA, p>0.05). Berdasarkan
kadar pengambilan ikan pada 142.2 g/hari, pengiraan kepekatan potensi setara (PEC), iaitu nilai potensi karsinogenisiti sebatian PAH, ketiga-tiga spesies ikan adalah pada julat 0.41 – 0.63 ng/g
berat basah. Nilai ini lebih rendah daripada nilai garis panduan yang
ditetapkan oleh USEPA, iaitu
0.67 ng/g berat basah.
Kata kunci:
Hidrokarbon polisiklik aromatic; kepekatan potensi setara; penilaian risiko;
tisu ikan
ABSTRACT
The
concentration of polycyclic aromatic hydrocarbon (PAH) in three fish species with different feeding habits and habitat
i.e. Lolong (Selar boops), Kerisi (Nemipterus
peronii) dan Mengkarong (Trachinocephalus myops) from offshore of
Perhentian Island, Malaysia was determined. Three individuals from each species
were taken at random and the PAHs
contents were determined in the muscles. Ten PAH compounds, phenanthrene, anthracene, fluoranthene, pyrene,
benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene,
benzo(e)pyrene and dibenzo(a,h)anthracene were determined. PAH in fish tissues was extracted using Soxhlet method and detected
using gas chromatography – mass spectrometry (GC-MS). The level of PAH in
fish tissue ranged from 17.89 – 42.18 ng/g wet weight and 393.98 – 511.07 ng/g
lipid weight. The order of PAH concentration
in wet weight was Kerisi (511.07 ng/g)> Mengkarong (409.50 ng/g)> Lolong
(393.98 ng/g) but in terms of lipid weight, the order was Kerisi (511.07
ng/g)> Mengkarong (409.50 ng/g)> Lolong (393.98 ng/g). Kerisi has the
lowest lipid content of 3.5% compared to Lolong (6.5 %) and Mengkarong (10.3
%). No obvious significant difference (p>0.05) of PAH levels in three fish spesies was observed (ANOVA, p>0.05). There was no significant relationship between
lipid content and PAH accumulation
in fish. Based on fish consumption rate of 142.2 g/day, the Potency Equivalent
Concentration (PEC), which is
a carcinogenic potency value for PAH, was found to be ranged from 0.41 – 0.63 ng/g wet weight in all
three species of fish. This value is below the limit set by USEPA, which is 0.67 ng/g wet weight for human consumption.
Keywords:
Fish tissue; polycyclic aromatic hydrocarbon; potency equivalent concentration;
risk assessment
REFERENCES
Allen, G. 2000. Marine Fishes of South East Asia, A Field
Guide for Anglers and Divers. Singapore: Periplus Editions Ltd.
Binelli, A. & Provini, A. 2003. POPs in edible clams from
different Italian and European markets and possible human health risk. Marine
Pollution Bulletin 46: 879-886.
Binelli, A. & Provini, A. 2004. Risk for human health of
some POPs due to fish from Lake Iseo. Ecotoxicology and Environmental Safety 58: 139-145.
Burgess, R.M., Ahrens, M.J. & Hickey, C.W. 2003.
Geochemistry of PAHs in aquatic environments: source, persistence and distribution.
Dlm. PAHs: An Ecotoxicological Perspective, Douben, P.E.T. New York:
John Wiley & Son Inc.
Cheung, K.C., Leung, H.M., Kong, M.H. & Wong, M.H. 2006.
Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong
markets and their health risk assessment Chemosphere June: 1-9.
FAO (Food and Agriculture Organization of United Nations). 1995. The State of World Fisheries and Aquaculture. Rome: FAO Fisheries
Department.
Fern‡ndez, P., Grimalt, J. & Vilanova, R. 2002. Atmospheric
gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountain
regions of Europe. Environ. Sci. Technol. 36: 1162-1168.
Fernandez, P., Vilanova, R., Mart’nez, C., Appleby, P. &
Grimalt, J. 2000. The historical record of atmospheric pyrolitic pollution over
Europe registered in sedimentary PAH from remote mountain lakes. Environ.
Sci. Technol. 34: 1906 -1913.
Hong, H., Xu, L., Zhang, L., Chen, J.C., Wong, Y.S. & Wan,
T.S.M. 1995. Environmental fate and chemistry of organic pollutants in
sediments of Xiamen and Victoria Harbours. Marine Pollution Bulletin 31:
229-236.
Howsan, M. & Jones, K. 1998. Sources of PAHs in the
environment. Dlm. Handbook of Environmental Chemistry. Neilson, A.H.
(ed.). Berlin: Springer-Verlag.
Kong, K.Y., Cheung, K.C., Wong, C.K.C. & Wong, M.H. 2005.
The residual dynamic of polycyclic aromatic hydrocarbons and organochlorine
pesticides in fishponds of the Pearl River Delta, South China. Water
Research 39: 1831-1843.
Lage Yusty, M.A. & Cortizo Davina, J.L. 2005. Supercritical
fluid extraction and high performance liquid chromatography – fluorescence
detection method for polycyclic aromatic hydrocarbons investigation in
vegetable oil. Food Control 16: 59-64.
Nisbet, I.C.T. & Rasmussen, J.B. 1992. Toxic equivalent
factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol.
Pharm. 16: 290-300.
Pena, T., Pensado, L., Casais, C., Mejuto, C., Phan-Tan-Luu, R.
& Cela, R. 2006. Optimization of a microwave-assisted extraction method for
the analysis of polycyclic aromatic hydrocarbons from fish samples. Journal
of Chromatography A 1121: 163-169.
Philips, D.J.H., 1980. Quantitation Aquatic biological
Indicators: Their Use to Monitor Trace Metals and Organochlorine Pollution.
United Kingdom: Applied Science Publishers Ltd.
Ramachandran, S.D., Sweezey, M.J., Hodson, P.V., Boudreau, M.,
Courtenay, S.C., Lee, K., King, T. & Dixon, J.A. 2006. Influence of
salinity and fish species on PAH uptake from dispersed crude oil. Marine
Pollution Bulletin (February): 1-8.
Russell, F., Taberski, K., Lamerdin, S., Johnson, E., Clark,
R.P., Downing, J.W., Newman, J. & Petreas, M. 1997. Organochlorines and
other environmental contaminants in muscle tissues of sportfish collected from
San Francisco Bay. Marine Pollution Bulletin 34: 1058- 1071.
Sericano, J. L., Brooks, J. M., Champ, M. A., Kennicutt II,
M.C., Makeyev, V. V. 2001. Trace contaminat concentration in Kara Sea and its
Adjacent Rivers, Russia. Marine Pollution Bulletin 42:1017-1030.
Tolosa, I., Bayona, J.M. & Albiges, J. 1996. Aliphatic and
polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in NW
Mediterranean sediments: Spatial and temporal variability, fluxes and budget. Environmental
Science Technology 30: 2495-2503.
USEPA, US Environmental Protection Agency. 1989. Risk assessment
guidance for superfund . Human health evaluation manual. Washington, D.C.:
US Environmental Protection Agency, Office of Emergency and Remedial Response.
USEPA, US Environmental Protection Agency. 1993. Dieldrin (CASRN
60-57-1): US Environmental Protection Agency, Office of Research and
Development, Integrated Risk Information System.
http://www.epa.gov/iris/subst/0225.htm#carc. [23 November 2006]
USEPA, US Environmental Protection Agency. 1996. Method
3540C: Soxhlet extraction. Washington, D.C.: US Environmental Protection
Agency.
USEPA, US Environmental Protection Agency. 2000. Guidance for
Assessing Chemical Contaminant, Data for Use in Fish Advisories: Fish Sampling
and Analysis. Washington: Office of Water.
Vilanova, R., Fern‡ndez, P., Mart’nez, C. & Grimalt, J.
2001. Polycyclic aromatic hydrocarbons in remote mountain lake waters. Water
Research 35: 3916-3926.
Vives, I & Grimalt, J.O. 2002. Method for integrated
analysis of polycyclic aromatic hydrocarbons and organochlorine compounds in
fish liver. Journal of Chromatography B 768: 247-254.
Wong, M.H. & Poon, B.H.T. 2003. Sources, fates and effects
of persistent organic pollutants in China, with emphasis on the Pearl River
Delta. Dlm. The Handbooks of Environmental Chemistry. Fiedler, H. hlm.
355-369. Berlin: Springer.
Zakaria, M. P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, I.,
Kouno, E. & Kumata, H. 2002. Distribution of polycyclic aromatic
hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of
petrogenic PAHs. Environ. Sci. Technol. 36: 1907-1918.
*Corresponding author; email: yhl1000@ukm.my
|