Sains Malaysiana 39(2)(2010): 243–248

 

Preparation of Transition Metal Sulfide Nanoparticles via Hydrothermal Route

(Penyediaan Zarah Sulfida Logam Peralihan Bersaiz Nano Melalui Kaedah Hidroterma)

 

Fei-Ling Pua1, Chin-Hua Chia1, Sarani Zakaria*, 1, Tze-Khong Liew1

Mohd Ambar Yarmo2 & Nay-Ming Huang1

 

1Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

2Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 6 February 2009 / Accepted: 25 August 2009

 

ABSTRACT

 

Nano sized copper sulfide, iron sulfide and molybdenum sulfide were successfully synthesised via a simple hydrothermal method. Sodium thiosulfate pentahydrate (Na2S2O3¥5H2O) and hydroxylamine sulfate ((H3NO)2¥H2SO4) were used as the starting materials and reacted with the transition metal source at 200oC for 90 min. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR). Spherical shape CuS and FeS2 nanoparticles with high crystallinity were successfully produced. The transmission electron micrographs revealed the well-dispersibility of the produced nanoparticles. Scanning electron micrograph showed the MoS2 nanoparticles possessed a spherical shape with sheet-like structure covering on the outer surface of the particles.

 

Keywords: Electron microscopy; hydrothermal; nanomaterials; sulfide; transition metal

 

ABSTRAK

 

Kuprum sulfida, ferum (IV) sulfida dan molibdenum sulfida bersaiz nano telah berjaya disintesis melalui kaedah hidroterma. Natrium tiosulfat pentahidrat (Na2S2O3¥5H2O) dan hidroksilamina sulfat ((H3NO)2¥H2SO4) telah digunakan sebagai bahan pemula untuk bertindak balas dengan sumber logam peralihan pada suhu 200oC selama 90 minit. Produk akhir telah dicirikan dengan pembelauan sinar-X (XRD), mikroskopi elektron transmisi(TEM), mikroskopi elektron imbasan(SEM), analisis penyebaran tenaga sinar-X (EDX), dan spektrometer infra-merah transformasi Fourier (FTIR). Nanozarah CuS dan FeS2 yang berbentuk sfera dan mempunyai darjah penghabluran yang tinggi berjaya dihasilkan. Mikrograf elektron transmisi menunjukkan taburan saiz nanozarah terserak dengan baik. Mikrograf elektron imbasan menunjukkan bahawa nanozarah MoS2 berbentuk sfera dengan permukaan luar zarah diliputi oleh struktur berbentuk kepingan.

 

Kata kunci: Hidroterma; logam peralihan; mikroskopi elektron; nanobahan; sulfida

 

REFERENCES

 

Alejandra, C.B.G., Luis, E.J. & Jose, Y.M. 2008. Characterization of low dimensional molybdenum sulfide nanostructures. Materials Characterization 59: 204-212.

Bal‡ž, P., Boldižarov‡, E., Godoć’kov‡, E. & Brianćin, J. 2003. Mechanochemical route for sulphide nanoparticles preparation. Material Letters 57: 1585-1589.

Hu, H., Bai, J., Guo, S. & Chen, G. 2002. Coal liquefaction with in situ impregnated Fe2(MoS4)3 bimetallic catalyst. Fuel 81: 1521-1524.

Kabil, M.A., Ghazy, S.E., El-Asmy A.A. & Sherif, Y.E. 1996. Highly selective procedure for trace analysis of platinum (IV) in its allied materials. Analytical Sciences 12: 431-437.

Liao, X.H., Wang, H., Zhu, J.J. & Chen, H.Y. 2001. Preparation of Bi2S3 nanorods by microwave irradiation. Materials Research Bulletin 36: 2339-2346.

Ma, L., Chen, W.-X., Li, H., Zheng, Y.-F, & Xu, Z.-D. 2008. Ionic liquid-assisted hydrothermal synthesis of MoS2 microspheres. Materials Letters 62: 797-799.

Monteiro, O.C., Nogueira, H.I.S., Trindade, T. & Motevalli, M. 2001. Use of dialkyldithiocarbamato complexes of bismuth(III) for the preparation of nano- and microsized Bi2S3 particles and the X-ray crystal structures of [Bi{S2CN(CH3)(C6H13)}3] and [Bi{S2CN(CH3)(C6H13)}3(C12H8N2)]. Chemistry of Material 36: 2103-2011.

Philias, J.M. & Marsan, B. 1999. FTIR spectroscopic study and thermal and electrical properties of polymer electrolytes containing a cesium thiolate/disulfide redox couple. Electrochimica Acta44: 2351-2363.

Philip, D., Eapen, A. & Aruldhas, G. 1995. Vibrational and surface enhanced raman scattering spectra of sulfamic acid. Journal of Solid State Chemistry 116: 217-223.

Qin, A.M., Fang, Y.P., Ou, H.D., Liu, H.Q. & Su, C.Y. 2005. Formation of various morphologies of covellite copper sulfide submicron crystals by a hydrothermal method without surfactant. Crystal Growth Design 5: 855-860.

Subba, Reddy C.V., Walker, Jr E.H., Wen C. & Mho S.I. 2008. Hydrothermal synthesis of MoO3 nanobelts utilizing poly(ethylene glycol). Journal of Power Sources 183: 330-333.

Tian, D., Sharma, R.K., Stiller, A.H., Stinespring, C.D. & Dadyburjor, D.B. 1995. Direct liquefaction of coal using ferric-sulfide-based, mixed-metal catalysts containing Mg or Mo. Fuel 75: 751-758.

Wang, H., Zhu, J.J., Zhu, J.M. & Chen, H.Y. 2002. Sonochemical method for the preparation of bismuth sulfide nanorods. Journal of Physical Chemistry B 106: 3848-3854.

Zou, J., Zhang, J., Zhang, B., Zhao, P. & Huang, K. 2007. Low-temperature synthesis of copper sulfide nano-crystal of novel morphologies by hydrothermal process. Material Letters 61: 5029-5032.

 

*Corresponding author; email: sarani@ukm.my

 

 

 

previous