Sains Malaysiana 39(2)(2010): 267–273
Preparation and
Characterization of Calcium Phosphate Nanorods using
Reverse Microemulsion and Hydrothermal Processing
Routes
(Penyediaan dan Pencirian Nanorod Kalsium Fosfat melalui Kaedah Microemulsi Songsang dan Hidroterma)
H.N.
Lim* & A. Kassim
Chemistry
Department, Faculty of Science, Universiti Putra Malaysia
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
N.M.
Huang
Solid
State Physics Research Laboratory, Physics Department, Faculty of Science
University
of Malaya, 50603 Kuala Lumpur, Malaysia
Received:
07 October 2008 / Accepted: 14 August 2009
ABSTRACT
Brushite (BR) and hydroxyapatite(HA) nanoparticles were fabricated through reverse microemulsion and hydrothermal processing route, respectively. The processing routes
influenced nucleation and crystal growth although both methods resulted in nanorods formation. The calcium-to-phosphate ratio was
1.67, similar to that of natural bone and teeth. X-ray diffraction patterns
revealed that the nanorods possessed almost pure
crystal phase with negligible second phase. The ratio of particle
length-to-width of BR and HA were approximately 3 and 4, respectively. To mimic the natural
bone, chitosan/brushite(CTS/BR) and chitosan/hydroxyapatite (CTS/HA) nanocomposite scaffolds were prepared through rapid freeze-drying technique.
The compressive strength of CTS/BR and CTS/HA nanocomposite scaffolds
was compared for the first time. The compression test revealed that both the nanocomposite scaffolds exhibited reasonably high
compressive strength of approximately 7 MPa. This
value falls in the high-end range of cancellous bone’s compressive strength, with the compressive strength of CTS/HA 0.88 MPa more than CTS/BR.
Keywords:
Calcium phosphate nanoparticles; compressive
strength; crystal growth; hydrothermal; microemulsion
ABSTRAK
Nanozarah brushit(BR) dan nanozarah hidroksiapatoit (HA) masing-masing disediakan melalui kaedah mikroemulsi songsang dan hidroterma. Kedua-dua kaedah penyediaan nanozarah mempengaruhi penukleusan dan pertumbuhan hablur walaupun kaedah-kaedah tersebut menghasilkan nanorod. Nisbah kalsium kepada fosfat ialah 1.67, serupa dengan nisbah tulang dan gigi asli. Corak pembelauan sinar-X menunjukkan kedua-dua nanorod itu memiliki fasa hablur yang hampir tulen dengan kehadiran fasa kedua yang boleh diabaikan. Nisbah panjang kepada lebar zarah bagiBR dan HA adalah masing-masing lebih kurang 3 dan 4. Untuk meniru tulang asli, rangka nanokomposit kitosan/brushit (CTS/BR) dan kitosan/hidroksiapatit (CTS/HA) disediakan menerusi teknik sejuk beku pantas. Kekuatan mampatan rangka nanokomposit CTS/BR dan CTS/HA telah dibandingkan buat pertama kali. Ujian mampatan menunjukkan kekuatan mampatan yang memuaskan bagi kedua-dua rangka nanokomposit, iaitu lebih kurang 7 MPa. Nilai ini berada dalam julat kekuatan di sebelah hujung tinggi bagi tulang kancelus, dengan kekuatan mampatan CTS/HA 0.88 MPa melebihi CTS/BR.
Kata kunci: hidroterma; kekuatan mampatan; mikroemulsi; nanozarah kalsium fosfat; pertumbuhan hablur
REFERENCES
Baksh, D.
2000. Design strategies for 3-dimensional in vitro bone growth in
tissue-engineering scaffolds. In Davies, J. E. (ed.). Bone
engineering p. 488-495. Toronto: Em Square.
Bohner, M.
2000. Calcium orthophosphates in medicine: from ceramics to calcium phosphate
cements. Injury 31: 37-47.
Byrappa, K.
2001. Handbook of Hydrothermal Technology. LLC:
Noyes Publications/ William Andrew Publishing.
Dean-Mo, L. 1997. Fabrication of hydroxyapatite ceramics with
controlled porosity. Journal of Materials Science: Materials in Medicine 8:
227-232.
Ding, S.J.
2007. Biodegradation behavior of chitosan/calcium
phosphate composites. Journal of Non-Crystalline Solids 353:
2367-2373.
Fendler, J.H.
1987. Atomic and molecular clusters in membrane mimetic
chemistry. Chemistry Review 87: 877-899.
Gbureck, U., Dembski, S., Thull, R. & Barralet, J.E. 2005. Factors influencing calcium phosphate
cement shelf-life. Biomaterials 26: 3691-3697.
Glatter, O., Orthaber, D. Stradner, A., Scherf, G., Fanun, M., Garti, N., Clement, V. & Leser,
M.E. 2001. Sugar-ester
nonionic microemulsion: structural characterization Journal
of Colloid Interface Science 241: 215-225.
Gray, D.H., Hu, S., Juang,
E. & Gin, D.L. 1997. Highly Ordered Polymer–Inorganic Nanocomposites via Monomer Self-Assembly: In Situ
Condensation Approach. Advance
Materials 9: 731-736.
Hench, L.L.
1991. Bioceramics: from concept to clinic. Journal
of American Ceramic Society 74: 1487-1510.
Hench, L.L.
1993. Bioceramic: from concepts to clinics. American
Ceramic Society Bulletin 72: 93-98.
Jarcho, M.
1981. Calcium phosphate ceramics as hard tissue prosthesis. Clinical Orthopaedics and Related Research 157:
259-278.
Jin, Q. M., Takita, H. & Kohgo, T. 2000. Effects of the geometry of hydroxyapatiteas cell substratum in BMP-induced ectopic bone formation. Journal of Biomedical
Materials Research 51: 491-1.
Knudsen,
F.P. 1959. Dependence of mechanical strength of brittle
polycrystalline specimens on porosity and grain size. Journal of
American Ceramic Society 42: 376-387.
Le Huec, J.C., Schaeverbeke,
T., Clement, D. 1995. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 16: 113-8.
Legeros, L.Z.
1998. Calcium phosphate materials in restorative dentistry: a review. Advances
in Dental Research 2: 164-183.
Levi-Kalisman, Y., Addadi, L. &
Weiner, S. 2001. Structure of the nacreous layer of a bivalve
mollusk shell examined in the hydrated state using cryo-TEM. Journal of Structural Biology 135: 8-17.
Lowenstam,
H.A., Weiner, S., Mann, S., Webb, J. & Williams, R. J. P. 1989. On BiomineralizationNew York: VCH Press.
Lu, X., Wang, Y., Wang, J., Qu, S., Weng, J., Xin, R. & Leng, Y. 2006. Calcium phosphate crystal growth under controlled environment through
urea hydrolysis. Journal Crystal Growth 297: 396-402.
Navarro, M.,
del Velle, S., Martinez, S., Zeppetelli,
S., Ambrosio, L., Planell,
J.A. & Ginebra, M.P. 2004. New macroporous calcium phosphate glass ceramic for guided bone
regeneration. Biomaterials 25: 4233-4241.
Nilsson, M., Fernandez, E., Sarda, S., Lidgren, L. & Planell, J. A.
2002. Characterization of a novel calcium phosphate/sulphate bone cement. Journal of Biomedical Materials
Research 61: 600-607.
Paul, B.K.
& Moulik S. P. 1997. Microemulsions:
an overview. Journal of Dispersion Science and Technology 18: 301-367.
Paul, W.
& Sharma, C.P. 1999. Development of porous spherical hydroxyapatite granules: application towards protein delivery. Journal of Materials Science 10: 383-388.
Petch, N.J.
1953. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute 174: 25-28.
Pileni, M.P.
2006. Reverse micelles used as templates: a new understanding in the nanocrystal growth of silver and copper nanocrystals by using hydrazine as redusing agent. Journal of
Experimental Nanoscience1: 13-27.
Ramay, H.R.R. & Zhang, M.
2004. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 25: 5171-5180.
Rice, R.W.
1993. Comparison of stress concentration versus minimum solid area based
mechanical property—porosity relations. Journal of Materials Science 28:
2187-2190.
Theiss, F., Apelt, D., Brand, B., Kutter, A., Zlinszky, K., Bohner, M.,
Matter, S., Frei, C., Auer, J. A. & von Rechenberg, B. 2005. Biocompatibility and resorption of a brushite calcium
phosphate cement. Biomaterials 26: 4383-4394.
Vallet-Regi, M. & Gonzalez-Calbet, J.M. 2004. Calcium phosphates as substitution
of bone tissues. Progress in Solid State Chemistry 32: 1-31.
Walsh, D.,
Kingston, J.L., Heywood, B.R. & Mann, S. 1993. Influence of monosaccharides and
related molecules on the morphology of hydroxyapatite. Journal of Crystal Growth 133: 1-12.
Wang, Y.J., Lai, C., Wei, K. & Tang, S.Q. 2005. Influence of temperature, ripening
time, and cosurfactant on solvothermal synthesis of calcium phosphate nanobelts. Materials
Letters 59: 1098-1104.
Wang, Y.,
Zhang, S., Wei, K., Zhao, N., Chen, J. & X. Wang. 2006. Hydrothermal
synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Materials Letters 60:
1484-1487.
Weiner, S., Wagner, H.D. 1998. The material bone: structure-mechanical function relations, Annual
Review of Materials Science 28: 271-298.
Xu, H.H.K.
& Simon Jr, C.G. 2005. Fast setting calcium
phosphate-chitosan scaffold: mechanical properties
and biocompatibility Biomaterials 26: 1337-1348.
Zhao, F., Yin, Y., Lu, W.W., Leong, J.C., Zhang, W., Zhang, J., Zhang,
M. & Yao K. 2002. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan gelatin network composite scaffolds. Biomaterials 23: 3227-3234.
*Corresponding
author; email: janet_limhn@yahoo.com
|