Sains Malaysiana 39(2)(2010): 299–303
Pengoptimuman Parameter
Dedahan dalam Mamografi Digital Medan Penuh menggunakan Rajah Merit
(Optimization
of Exposure Parameters in Full Field Digital Mammography using Figure of Merit)
Laila Suryani Elias*,1, Eng May Lin1, Ang Wee Chin1, Abd Aziz Tajuddin2, Shantini A. Arasaratnam3, Suraya Aziz4, Khairul Osman5 & Kanaga Kumari Chelliah1
1Program Pengimejan Diagnostik dan Radioterapi, Fakulti Sains
Kesihatan Bersekutu
Universiti Kebangsaan Malaysia, Jalan
Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia
2Pusat Pengajian Sains Fizik,
Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
3Jabatan
Radiologi, Hospital Kuala Lumpur, Jalan Pahang, 50300, Kuala
Lumpur, Malaysia
4Jabatan Radiologi, Hospital
Universiti Kebangsaan Malaysia
Jalan
Yaacub Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
5Program Sains Forensik, Fakulti
Sains Kesihatan Bersekutu
Universiti
Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
Received: 14 April 2009 / Accepted:
13 July 2009
ABSTRAK
Mamografi
digunakan sebagai alat penskrinan dalam pengesanan awal kanser payudara. Walau
bagimanapun, dos radiasi yang digunakan perlulah serendah mungkin bagi
meminimumkan sebarang kesan pada wanita asimptomatik di samping mengekalkan
kualiti imej bernilai diagnostik memandangkan ia digunakan setiap tahun. Kajian
ini dijalankan bagi menentukan parameter dedahan optimum dalam kawalan dedahan
automatik (AEC) untuk dua kombinasi
anod/penuras iaitu molibdenum/molibdenum (Mo/Mo) dan molibdenum/rhodium (Mo/Rh)
menggunakan sistem mamografi digital Lorad Selenia di Klinik Payudara Wanita,
Pusat Kebangsaan Kanser Malaysia (NCS). Satu fantom kajian mamografi CIRS012A berketebalan 4 cm dengan 50% kandungan tisu glandular
didedahkan pada projeksi kranio-kaudal (cc). TLD 100H telah digunakan untuk mengukur kerma udara kemasukan
permukaan (ESAK). Nilai AGD ditentukan daripada nilai ESAK, melibatkan tiga faktor pembetulan (g, c and s) mengikut
protokol Euref. Kualiti imej pula dinilai menggunakan nisbah isyarat kepada
hingar (SNR) yang diperoleh dari sistem
terbabit. Rajah merit (FOM) iaitu
nisbah kuasa dua SNR kepada AGD menunjukkan 30 kVp adalah parameter dedahan optimum untuk fantom
berketebalan 4 cm menggunakan kombinasi anod/penuras Mo/Rh dan Mo/Mo. Ujian
korelasi Spearman tak parametrik menunjukkan hubungan linear negatif antara AGD dan SNR dengan
peningkatan nilai voltan tiub untuk kedua-dua kombinasi anod/penuras.
Kata kunci:
Dedahan; dos glandular purata; fantom CIRS012A; mamografi digital medan penuh
ABSTRACT
Mammography
is used as a screening tool for early detection of breast cancer. However, the
radiation dose used should be as low as possible to minimize any effects on
asymptomatic woman while maintaining the diagnostic value of the image as
mammography is done annually. This study was done to determine the optimum
exposure parameter in exposure control mode (AEC) for two combinations of anode/filter which were
molybdenum/molybdenum (Mo/Mo) and molybdenum/rhodium (Mo/Rh) using the Lorad
Selenia digital mammography system at the Women’s Breast Clinic, National
Cancer Society (NCS). A CIRS012A mammography research of phantom 4 cm thickness with 50%
glandularity was exposed in the cranio-caudal projection. TLD 100H was used to measure the entrance surface air kerma (ESAK). The AGD values were
then calculated from the ESAK values,
incorporating three correction factors (g, c and s) according to Euref
protocol. Image quality was evaluated using signal to noise ratio (SNR). Figure of Merit (FOM) which is the ratio of the square of SNR to the AGD shows that
30 kVp is the optimum exposure parameter for a 4 cm thickness phantom with the
use of Mo/Rh and Mo/Mo anode/filter combination. Non-parametric Spearman correlation
test showed a negative linear relationship between AGD and SNR with
increasing tube voltage for both anode/filters.
Keywords:
Average glandular dose; CIRS012A
phantom; exposure; full field digital mammography
REFERENCES
Aichinger, H., Dierker, J., Joite-barfub, S. & Sabel, M.
2004. Radiation Exposure and Image Quality in X-ray Diagnostic Radiology,
Physical Principles and Clinical Applications. Berlin Heidelberg:
Springer-verlag 91-94.
Baldelli, P., Phelan, N. & Egan, G. 2008. Effect of Anode/Filter
Combination on the Dose and Image Quality of a Digital Mammography System Based
on an Amorphous Selenium Detector. Digital Mammography 716-723.
Bor, D., Tukel, S., Olgar, T., Toklu, T., Aydin, E. & Akyol,
O. 2008. Investigation of mean glandular dose versus compressed breast
thickness relationship for mammography. Radiat. Prot. Dosimetry 129(1-3):
160-4.
Burell, H.C., Pinder, S.E., Wilson, A.R., Evans, A.J., Yeoman,
L.J., Elston, C.W. & Ellis, I.O. 1996. The positive redictive value of
mammographic signs: a review of 425 nonpalpable breast lesions. Clin.
Radiol. 51(4): 277-81.
Dance, D.R., Skinner, C.L., Young, K.C., Becktt, J.R. &
Kotre, C.J. 2000. Additional factors for the estimation of mean glandular
breast dose using UK mammography dosimetry protocol. Phys. Med. Biol. 45(11):
3225-3240.
Gram, I.T., Funkhouser, E. & Tabar, L. 1997. The Tabar
classification of mammographic parenchymal patterns. Eur. J. Radiol. 24(2):
131-6.
Harmmerstein, G.R., Miller, D.W., White, D.R., Masterson, M.E.,
Woodard, H.Q. & Laughlin, J.S. 1979. Absorbed dose in mammography. Radiology 130:485-491.
Hemdal, B., Herrnsdorf, L., Andersson, I., Bengtsson, G.,
Heddson, B. & Olsson, M. 2005. Average Glandular Dose According to American
and European Dose Protocols Using a Sectra MicroDose Mammography Unit.
www.rti.se/dealer/downloads/documents/scientific/996icmp2005hemdal.pdf.
Jamal, N., Ng, K. H., McLean, D., Looi, L. M., & Moosa, F.
2004. Mammographic Breast Glandularity in Malaysian Women: Data Derived from
Radiography. AJR 182: 713-717.
Kerlikowske, K., Grady, D., Rubin, S.M., Sandrock, C. &
Ernster, V.L. 1995. Efficacy of screening mammography: A meta-analysis. J.
Am. Med. Assoc. 273(2): 149-54.
Lee, C.H. 2002. Screening mammography:proven benefit, continued
controversy. Radiol. Clin. North Am. 49: 395-407.
Letton, A.H., Mason, E.M. & Ramshaw, B.J. 1996. Twenty year
review of a breast cancer screening project:ninety-five percent survival of
patients with nonpalpable cancers. Cancer 77: 104-106.
Ng, K.H., Jamal, N. & DeWerd, L. 2006. Global quality
control perspective for the physical and technical aspects of screen-film
mammography-image quality and radiation dose. Radiation Protection Dosimetry 121(4): 445-451.
Radiology Info. 2007. The radiology information resource for patients.
Radiological Society of North America, Inc.
http://www.radiologyinfo.org/en/info.cfm?pg=mammo&bhcp=1 [21 Ogos 2007].
Tabar, L. & Dean, P. B. 1982. Mammographic parenchymal
pattern: risk indicator for breast cancer? J. Am. Med. Assoc. 247:
185-9.
Van Engen, R., Young, K., Bosmans, H. & Thijssen, M. 2003.
Addendum on digital mammography to chapter 3 of the European guidelines for
quality assurance in mammography screening, Versi 1.0 (Belgium: EUREF).
Williams, M.B., Raghunathan, P., Seibert, A., Kwan, A., Lo, J.,
Samei, E., Fajardo, L., Maidment, A.D.A., Yaffe, M. & Bloomquist, A.
2006. Beam Optimization for Digital Mammography – II. Digital Mammography 273-280.
*Corresponding author; email: elayani85@yahoo.com
|