Sains Malaysiana 39(3)(2010): 417–422

 

Pendekatan Pelbagai Kriteria untuk Pemilihan Teknologi Pengurusan Sisa Pepejal Terbaik

(Multi-criteria Approach for Selecting the Best Solid Waste Management Technologies)

 

A.M. Latifah

Jabatan Sains Alam Sekitar Fakulti Pengajian Alam Sekitar Universiti Putra Malaysia 43400 UPM Serdang, Selangor D. E., Malaysia

 

Hassan Basri & Noor Ezlin Ahmad Basri

Jabatan Kejuruteraan Awam dan Struktur Fakulti Kejuruteraan dan Alam Bina Universiti Kebangsaan Malaysia 43600 Bangi, Selangor D. E., Malaysia

 

Received: 8 May 2009 / Accepted: 9 November 2009

 

ABSTRAK

 

Peningkatan aktiviti perbandaran dan perindustrian telah mencetuskan masalah pengurusan sisa pepejal. Sebagai usaha penyelesaian, pendekatan bersepadu telah dipilih bagi menguruskan sisa pepejal. Membangunkan dan melaksanakan rancangan pengurusan sisa pepejal bersepadu perlu melibatkan gabungan teknologi dan pilihan yang sesuai dengan keadaan dan undang-undang tempatan. Kajian ini menunjukkan Proses Analisis Hierarki (PAH) berpotensi sebagai kaedah membuat keputusan yang boleh digunakan dalam proses pemilihan teknologi pengurusan sisa pepejal. Tiga aras hierarki dibangunkan dengan matlamat di aras tertinggi, diikuti oleh kriteria dan alternatif. Dengan menggunakan teknik ini, penentuan keutamaan untuk semua teknologi pengurusan sisa pepejal yang dipertimbangkan akan ditentukan dan teknologi dengan nilai keutamaan tertinggi lebih sesuai untuk dibangunkan. Analisis sensitiviti dilakukan bagi menguji sensitiviti keputusan akhir terhadap perubahan kecil penilaian. Aplikasi PAH dalam menentukan keutamaan proses pemilihan teknologi pengurusan sisa pepejal diperjelaskan dalam kajian ini berdasarkan kepada kajian kes di Majlis Perbandaran Port Dickson. Hasil analisis menunjukkan kombinasi teknologi kitar semula dan pengkomposan sesuai diaplikasikan di daerah Port Dickson.

 

Kata kunci: Proses analisis hierarki; pengurusan sisa pepejal

 

ABSTRACT

 

The growth in urbanization and industrial activities has caused solid waste management problems. As a solution the integrated approach has been chosen to manage the solid waste. Developing and implementing integrated solid waste management involve combined technologies and alternatives which are suitable with local laws condition. This research showed that Analytical Hierarchy Process (AHP) has the potential as a decision making tool that can be used in selecting process of solid waste management technology. Three levels hierarchy was developed with the goal at the top level, followed by criteria and alternatives. By using this technique, the priority of each considered technology will be determined where technology with the highest priority is more suitable to be developed. Sensitivity analysis was carried out to test the sensitivity of final decision towards inconsistency of judgement. Application of AHP to determine priority in selecting solid waste management technology was explained in this research based on a case study in the Port Dickson Municipal Council. Analysis of result showed that the combination of recycling technology and composting are suitable to be applied in the Port Dickson district.

 

Keywords: Analytical hierarchy process; solid waste management 

 

REFERENCES

 

Banai, R. 1993. Fuzziness in geographical information systems: contributions from the analytic hierarchy process. International Journal of Geographical Information System 7(4): 315-329.

Barker, S., Shepperd, M. & Aylett, M. 2001. The analytic hierarchy process and data-less prediction. 1 - 9. (atas talian) http://citiseer.nj.nec.com/60714.html (14 Mac 2003).

Bevilacqua, M., D’Amore, A. & Polonara, F. 2004. A multi-criteria decision approach to choosing the optimal blanching-freezing system. Journal of Food Engineering 63: 253-263.

Cho, K.T. & Kwon, C.S. 2004. Hierarchies with dependence of technological alternatives: A cross-impact hierarchy process. European Journal of Operational Research 156: 420-432.

Chung, S.S. & Poon, C.S. 1996. Evaluating waste management alternatives by the multiple criteria approach. Resources, Conversation and Recycling 17: 189-210.

Eddi, W.L. & Hang, L. 2001. Analytic hierarchy process, an approach to determine measures for business performance. Measuring Business Performance 5(3): 30-36.

Elkarni, F. & Mustafa, I. 1993. Increasing the utilization of solar energy technologies (SET) in Jordan. Energy Policy 21: 978-984.

Farber, S. 2000. Welfare-based ecosystem management: An investigation of trade-offs. Environmental Science and Policy 3: 491-498.

Gleason, J.M. 1999. An analytic hierarchy process framework for technology acquisition decisions related to library information services. Proceedings of the 4th Annual International Conference on Industrial Engineering Theory, Applications and Practice. San Antonio, Texas.

Kablan, M.M. 2004. Decision support for energy conservation promotion: an analytic hierarchy process approach. Energy Policy 32: 1151-1158. Kim, J. 1998.

Hierarchical structure of intranet functions and their relative importance: using the analytic hierarchy process for virtual organization. Decision Support Systems 23: 59-74.

Nigim, K.A., Suryanarayanan, S., Gorur, R. & Farmer, R.G. 2003. The application of analytical hierarchy process to analyze the impact of hidden failures in special protection schemes. Electric Power Systems Research 67: 191-196.

Saaty, T.L. 1980. The Analytic Hierarchy Process. New York: McGraw Hill Inc. Saaty, T.L. 1985. Decision Making for Leaders. Beltmont, California: Life Time Learning Publication.

Saaty, T. L. 1990. How to make a decision: the analytic hierarchy process. European Journal of Operational Research 48: 9-26.

Saaty, T.L. 1991. Analytical Planning: The Organization of Systems. Pittsburg, USA: RWS Publication.

Saaty, T.L. 1995. Decision Making for Leaders – The Analytic Hierarchy Process for Decisions in a Complex World. Pitsburgh, USA: RWS Publications.

Schubeler, P., Wehrle, K. & Christen, J. 1996. Conceptual Framework for Municipal Solid Waste Management in Lowincome Countries. Working Paper Number 9. Nairobi, Kenya: UNDP/UNCHS/WORLD BANK-UMP.

Siddiqui, M.Z., Everett, J.W. & Vieux, B.E. 1996. Landfill siting using geographic information system: A demonstration. Journal of Environmental Engineering 122(6): 515 – 523.

Tiwari, M.K. & Banerjee, R. 2001. A decision support system for the selection of a casting process using analytic hierarchy process. Production Planning and Control 12(7): 689-694.

Triantaphylou, E. & Mann, S.H. 1995. Using analytic hierarchy process for decision making in engineering applications: some challenges. International Journal of Industrial Engineering: Applications and Practices 2(1): 35-44.

Zhu, X. & Dale, A.P. 2001. JavaPAH: a web-based decision analysis tool for natural resource and environmental management. Environmental Modelling and Software 16: 251-262.

 

*Corresponding author; email: latifah@env.upm.edu.my

 

 

 

previous