Sains
Malaysiana 39(4)(2010): 621–626
Kelakuan Pengesanan Tekanan Bagi Seramik
Natrium Bismut Titanat
(Pressure Sensing
Behaviour of Sodium Bismuth Titanate Ceramics)
Mohammad Hafizuddin Haji Jumali*,
Mohd Riduan Mt Said, Ngoi Yung Wee & Muhammad Yahaya
Pusat Pengajian Fizik Gunaan, Fakulti
Sains dan Teknologi
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor D.E., Malaysia
Muhammad Mat Salleh
Institut Kejuruteraan Mikro dan
Nanoelektronik (IMEN)
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor D.E., Malaysia
Received: 16 September 2009 /
Accepted: 5 January 2010
ABSTRAK
Satu kajian bagi menentukan kesan
suhu ke atas mikrostruktur dan kelakuan pengesanan tekanan seramik Na0.45Bi0.55TiO3 (NBT) sebagai
bahan piezoelektrik bebas plumbum telah dilakukan. Seramik NBT disediakan
secara tindak balas keadaan pepejal daripada campuran serbuk Na2CO3,
Bi2O3 dan
TiO2. Campuran serbuk disinter pada tiga suhu yang berlainan iaitu 1100 oC,
1200 oC dan 130 0oC selama 12 jam. Selepas disinter,
serbuk NBT dikisar dan
dimampatkan menjadi pelet berdiameter 13 mm diikuti pemanasan selama 2 jam pada
700 oC. Mikrostruktur dan morfologi sampel masing-masing dikaji dengan
menggunakan XRD dan SEM. Sifat pengesanan tekanan NBT diuji
dengan menggunakan kebuk tekanan pneumatik. Analisis
pembelauan sinar-X menunjukkan semua sampel mengandungi lebih 70% NBT berstruktur
rombohedral sebagai fasa utama dan bakinya merupakan fasa sekunder Bi2Ti2O7 (BTO). Kenaikan suhu sinteran didapati meningkatkan kandungan fasa NBT di
dalam sampel. Mikrograf SEM menunjukkan
saiz butiran dan ketumpatan sampel semakin meningkat dengan pertambahan suhu
sinteran. Ujian sifat pengesanan tekanan menunjukkan
kesemua sampel memberi sambutan apabila voltan pemula diberikan. Berdasarkan faktor ketumpatan, kestabilan dan kebolehulangan sifat pengesanan
tekanan, seramik NBT yang
disinter pada suhu 1200oC merupakan
seramik yang terbaik dan berpotensi digunakan sebagai sensor tekanan.
Kata kunci: Natrium bismut titanat; perovskit;
piezoelektrik; sensor tekanan
ABSTRACT
A study to determine the microstructure and pressure
sensing behaviour of Na0.45Bi0.55TiO3 (NBT) as lead-free ceramics has been conducted. NBT ceramics were prepared using the solid
state reaction technique from stoichiometric mixture of Na2CO3, Bi2O3 and TiO2 powders. The mixture was sintered at three different
temperatures namely 1100 oC, 1200 oC, 1300 oC for 12 hours. After sintering, the NBT powders were ground and pressed into pellet with 13 mm
diameter and subsequently heated at 700 oC for 2 hours. Microstructure and morphology of the
samples were determined using XRD and SEM, respectively. Customized pressure chamber using
pneumatic load was employed for pressure sensing behaviour of the samples.
X-ray diffraction analysis revealed that all samples consist of more than 70%
of polycrystalline, rhombohedral NBT phase, with bismuth titanate, Bi2Ti2O7 (BTO) as the
secondary phase. The increment in sintering temperature has resulted in the
formation of higher NBT content
in the sample. SEM micrographs
showed that grain size and bulk density of the samples increased with the
increment of sintering temperature. Pressure sensing test showed that all
samples were responsive toward pressure variations only when initial voltage
was applied to the ceramics. Based on density, stability and repeatability in
pressure sensing behavior, NBT ceramic
sintered at 1200 oC
was the best ceramic with great potential as lead free pressure sensing
material.
Keyword: Piezoelectric; pressure sensor; perovskite;
sodium bismuth titanate
REFERENCES
Babu, B.J.,
Madeswaran, G., He, M., Zhang, D.F., Chen, X.L. & Dhanasekaran, R. 2008. Inhomogeneity issues in growth of Na1/2Bi1/2TiO3-BaTiO3 single crystals. Journal of Crystal
Growth 310: 467-472.
Callister, D.W. 2007. Material Science and Engineering: An
Introduction. New York: John Wiley and Sons.
Calata, J.N. 2005. Densification
behavior of ceramic and crystallizable glass materials constrained on a rigid
substrate. PhD Thesis
Virginia Polytechnic Institute and State University.
Haccart, T.,
Cattan, E. & Remiens, D. 2002. Dielectric,
ferroelectric and piezoelectric properties of sputtered PZT thin films on Si
substrates: Influence of film thickness and orientation. Semiconductor Physics, Quantum Electronics & Optoelectronics 5(1):
78-88.
Ho, C.J., Jun, M.Y., Hyeon L.Y., Pyo
C.M. & Byung, K. 2006. Piezoelectric ceramic powder
synthesis of bismuth-sodium titanate by a hydrothermal process. Journal of Ceramic Processing Research 7:
91-94.
Lin, Y., Zhao, S.,
Cai, N., Wu, J., Zhou, X. & Nan, C.W. 2003. Effect of Doping Eu2O3 on
the phase transformation and piezoelectric properties of Na0.5Bi0.5TiO3-based
ceramics. Material Science and
Engineering B99: 449-452.
Pengpat, K.,
Jarupoom, P., Kantha, P., Eitssayeam, S., Intatha, U., Rujijanagul, G. &
Tunkasiri, T. 2008. Phase formation and electrical
properties of lead-free bismuth sodium titanate-potassium niobate ceramics. Current Applied Physics 8: 241-245.
Ramli, N., Mat
Salleh, M., Yahaya, M. & Hj Jumali, M.H. 2009. Effect of ZrO2 addition on microstructure,
morphology and pressure sensing behaviour of Pb (ZrxTi1-x)O3 ceramic sintered in Al2O3 environment. Sains Malaysiana 38: 685-691.
Remondiere, F.,
Malic, B., Kosec, M. & Mercurio, J.P. 2007. Synthesis and crystallization pathway of Na0.5Bi0.5TiO3 thin film obtained by A modified sol–gel route. Journal of European Ceramic Society 27:
4363-4366.
Remondiere, F.,
Malic, B., Kosec, M. & Mercurio, J.P. 2008. Study of the crystallization pathway of Na0.5Bi0.5TiO3 thin films obtained by chemical solution deposition. Journal of Sol-Gel Technology 46:
117-125.
Wenwei, G., Hong, L., Xiangyong, Z.,
Weizhuo, Z., Xiaoming, P., Tianhou, H., Di, L., Haiqing, X., Xiangping, J.
& Haosu, L. 2007. Growth, optical and electrical
properties of pure and Mn-doped Na0.5Bi0.5TiO3 Lead-free piezoelectric Crystals. Journal
of Alloy and Compound 462: 256-261.
Wenwei, G., Liu,
H., Zhao, X., Pan, X., He, T., Lin, D., Xu, H. & Luo, H. 2008. Growth and characterization of Na0.5Bi0.5TiO3–BaTiO3 lead-free piezoelectric crystal by the TSSG Method. Journal of Alloys and Compounds 456: 503-507.
Watcharapasorn, A.,
Jiansirisomboon S. & Tunkasiri, T. 2007. Sintering of Fe-doped Bi0.5Na0.5TiO3 at <1000 oC. Material Letters 61: 2986-2989.
Xiujie, Y.,
Huanchu, C., Wenwu, C., Minglei, Z., Dongmei, Y., Guanpeng, M., Changhong, Y.
& Jianru, H. 2005. Flux growth and
characterization of lead-free piezoelectric single crystal [Bi0.5(Na1-xKx)0.5]TiO3 Journal of Crystal Growth 281:
364-369.
Xu, Q., Wu, S., Chen, S., Chen, W.,
Lee, J., Zhou, J., Sun, H. & Li, Y. 2005. Influences of poling condition
and sintering temperature on piezoelectric properties of (Na0.5Bi0.5)1-xBaxTiO3 Ceramics. Materials Research Bulletin 40:
373-382.
Xu, Y., Shan, D.
& Song, J. 2005. Effect of
a-site substitution on crystal component and dielectric properties in Bi0.5Na0.5TiO3
ceramics. Materials Science and
Engineering B 121: 148-151.
Xu, Q., Huang,
Y.H., Chen, M., Chen, W., Kim, B.H. & Ahn, B.K. 2008. Effect of bismuth deficiency on structure and electrical
properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 Ceramics. Journal of Physics and
Chemistry of Solid 69: 1996-2003.
Yu, T., Kwok, K.W.
& Chan, H.L.W. 2007. Preparation and properties of
sol gel derived Bi0.5Na0.5TiO3 lead free
ferroelectric thin film. Thin Solid Films 515: 3563-3566.
*Corresponding author; email:
hafizhj@ukm.my
|