Sains Malaysiana 39(4)(2010): 633–638
Antena Tompok Mikrojalur Bertindan untuk
Aplikasi Gandaan Tinggi
(Stacked
Microstrip Patch Antenna for High Gain Application)
Norbahiah Misran1*, Mohammad Tariqul Islam2 & Farizah Ansarudin1
1Jabatan Kejuruteraan Elektrik, Elektronik & Sistem,
Fakulti Kejuruteraan dan Alam Bina, Universiti
Kebangsaan Malaysia
43600 UKM Bangi, Selangor, Malaysia
2Institut Sains Angkasa, Aras 2, Bangunan Fakulti Kejuruteraan
dan Alam Bina
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 21 January 2009 / Accepted:
12 November 2009
ABSTRAK
Teknik reka
bentuk untuk meningkatkan gandaan bagi menambah baik prestasi antena tompok
mikrojalur konvensional dibincangkan. Kaedah suapan prob tersongsang jalur lebar
bagi antena tompok mikrojalur berbilang lubang alur bertindan dicadangkan. Reka
bentuk tersebut menggabungkan beberapa teknik kontemporari iaitu kaedah suapan
prob, struktur tompok tersongsang dan tompok berbilang lubang alur bertindan.
Kesan komposit daripada penyatuan pelbagai teknik ini dan dengan memperkenalkan
bentuk elemen tompok yang baru, memberikan profil yang rendah, jalur lebar yang
lebih luas, gandaan tinggi dan elemen antena yang padat. Keputusan menunjukkan
peningkatan gandaan di mana gandaan maksimum adalah 11.42 dBi. Reka bentuk ini
sesuai untuk aplikasi tata susunan terutama untuk stesen tapak.
Kata kunci:
Antena jalur lebar; antena tompok mikrojalur; suapan prob
ABSTRACT
A novel
design technique for enhancing gain that improves the performance of a
conventional microstrip patch antenna is proposed. This research addresses a
novel wideband probe fed inverted stacked multiple slotted microstrip patch
antenna. The design adopts contemporary techniques; probe feeding, inverted
patch structure and stacked multiple slotted patch. The composite effect of
integrating these techniques and by introducing the novel multiple shaped
patch, offer a low profile, broadband, high gain and compact antenna element.
The result showed satisfactory performance with maximum achievable gain of
about 11.42 dBi. The design is suitable for array applications especially for
base station.
Keywords:
Broadband antenna; microstrip patch antenna; probe fed
REFERENCES
Araki, K., Ueda, H. & Takahashi, M. 1986. Numerical Analysis
of Circular Disk Microstrip Antenna with Parasitic Elements. IEEE
Transactions on Antennas and Propagation 34(12): 1390-1394.
Chair, R., Luk, K.M. & Lee, K.F. 2000. Miniature multilayer
shorted patch antenna. Electron Letters 36: 3-4.
Chang, E., Long, S.A. & Richards, W.F. 1981. Experimental
investigation of electrically thick rectangular microstrip antennas. IEEE
Transactions on Antennas and Propagation 34: 767-772.
Chang, K. 2000. RF and Microwave Systems. College
Station: Texas A & M University.
Chen, W.S., Wu, C.K. & Wong, K.L. 2000. Novel compact
circularly polarized square microstrip antenna. IEEE Transactions on
Antennas and Propagation 48: 1869-1872.
Egashira, S. & Nishiyama, E. 1996. Stacked microstrip
antenna with wide bandwidth and high gain. IEEE Transactions on Antenas and
Propagation 44: 1533-1534.
Henderson, A., James, J.R. & Hall, C.M. 1986. Bandwidth
extension techniques in printed conformal antennas. Military Microwaves MM
86, Jun.
Hirasawa, K. 1991. Analysis, Design and Measurement of
Small and Low-profile Antennas. Norwood MA: Artech House.
Kuo, J.S. & Wong, K.L. 2001. A compact microstrip antenna
with meandering slots in the ground plane. Microwave and Opical Technology
Letters 29(2): 95-97.
Lau, K.-L., Luk, K.-M. & Lee, K.-F. 2006. Design of a
circularly-polarized vertical patch antena. IEEE Transactions on Antennas
and Propagation 54(4): 1332-1335.
Ng, K.J., Zainol, A.A.R. & Tariqul Islam, M. 2003. Broadband
inverted E-shaped rectangular microstrip patch antennas for 3G applications. IEEE
National Symposium on Microelectronics pp. 286-289.
Ooi, B.L. & Lee, C.L. 1999. Broadband air-filled stacked
U-slot patch antenna. Electronics Letters 35(7): 515-517.
Ooi, B.L., Lee, C.L., Kooi, P.S. & Chew, S.T. 2001. A novel
F-probe fed broadband patch antenna. IEEE Antennas and Propagation Society
International Symposium 4: 474-477.
Pozar, D.M. 1992. Microstrip antennas. Proceeding of IEEE,
80: 79-91.
Pozar, D.M. & Schaubert, D.H. 1995. Microstrip Antennas,
the Analysis and Design of Microstrip Antenas and Arrays. New York: IEEE
Press.
Rafi, G.Z. & Shafai, L. 2003. V-slotted Rectangular
Microstrip Antena with a Stacked Patch. IEEE International Symposium on
Antennas and Propagation Society 2: 264-267.
Sanchez-Herndez, D. & Robertson, L.D. 1996. A Survey of
Broadband Microstrip Patch Antennas. Microwave Journal 39(9): 60-84.
Schaubert, D.H., Pozar, D.M. & Adrian, A.A. 1989. Effect of
Microstrip Antenna Substrate Thickness and Permittivity: Comparison of Theories
and Experiments. IEEE Transactions on Antennas and Propagation 37:
677-682.
Stustzman, W.L. & Thiele, G.A. 1998. Antenna
Theory and Design. New York: Wiley.
Sze, J.Y. & Wong, K.L. 2000. Slotted Rectangular Microstrip
Antenna for Bandwidth Enhancement. IEEE Transactions on Antenas and
Propagation 48: 1149-1152.
Targonski, S.D., Waterhouse, R.B. & Pozar, D.M. 1998. Design
of wide-band aperture stacked patch microstrip antennas. IEEE Transactions
on Antenas and Propagation 46(9): 1245-1251.
Tariqul Islam, M., Misran, N. & Ng, K.J. 2007. A 4¥1 L-probe
fed Inverted Hybrid E-H Microstrip Patch Antena Array for 3G Application.
American Journal of Applied Sciences 4(11): 897-901.
Wong, K.L. & Hsu, W.H. 2001. A broadband rectangular patch
antenna with a pair of wide slits. IEEE Transactions on Antennas and
Propagation 49: 1345-1347.
Zhang, Y.P. & Wang, J.J. 2006. Theory and analysis of
differentially-driven microstrip antennas. IEEE Transactions on Antennas and
Propagation 54(4): 1092-1099.
*Corresponding
author; email: bahiah@vlsi.eng.ukm.my
|