Sains Malaysiana 39(4)(2010): 661–670
Penyelesaian Masalah Data Ketakpastian Menggunakan Splin-B Kabur
(Solving
Problems of Uncertain Data using Fuzzy B-Spline)
Abd. Fatah Wahab*
Jabatan Matematik, Fakulti Sains dan Teknologi
Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
Jamaludin Md. Ali & Ahmad Abd. Majid
Sekolah Sains Matematik, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
Abu Osman Md. Tap
Jabatan IT, Universiti Islam Antarabangsa Malaysia, 53100 Gombak, Selangor, Malaysia
Received: 15 May 2009
/Accepted: 29 December 2009
ABSTRAK
Pembinaan model geometri berbantukan komputer (CAGD) dengan titik data yang mempunyai ketakpastian adalah sukar dan mencabar. Dalam kertas ini, pembinaan model splin-B kabur sebagai perwakilan matematik bagi lengkung dengan data ketakpastian menggunakan titik kawalan kabur dan titik kawalan penyahkaburan dibincangkan. Lengkung splin-B kabur atau splin-B penyahkaburan kubik untuk masalah data ketakpastian akan diperihalkan dengan menggunakan kaedah penghampiran splin-B kubik yang ditakrif menerusi titik kawalan kabur dan titik kawalan penyahkaburan. Bagi menyelesaikan masalah mengenai titik data ketakpastian pula, kaedah pengkaburan dan penyahkaburan titik data berkomponen kabur (penyahkaburan) beserta modelnya diperkenalkan. Bagi menguji tahap keberkesanan model, beberapa contoh lengkung simulasi data tersebut juga dibincangkan.
Kata kunci: Data ketakpastian; penyahkaburan; splin-B kabur; titik kawalan kabur
ABSTRACT
The
construction of a geometric model in Computer Aided Geometrical Design (CAGD) with uncertain data points
are difficult and challenging. In this paper, the construction of a fuzzy B-spline model as a mathematical representation for the curve
of uncertain data using fuzzy control points and deffuzified control points is discussed. Cubic fuzzy B-spline or defuzzified B-spline curve for
uncertainty data problems will be described using the cubic fuzzy B-spline approximation methods which are defined through
fuzzy and defuzzification control points. For solving
uncertain data, a method of fuzzification and defuzzification of component fuzzy (defuzzify)
data point together with their model was introduced. For testing the
effectiveness of the model, several examples of curve simulation of the given
data are also discussed.
Keywords: Defuzzification; fuzzy B-Splie;
fuzzy control points; uncertain data
REFERENCES
Abd. Fatah Wahab, Ali, J.M., Majid, A.A.
& Tap, A.O.M. 2004. Fuzzy set in geometric modelling. International Conference on Computer
Graphics, Imaging and Visualization. CGIV 2004,
26-29 July, Penang Malaysia. IEEE Computer Society.
Abd. Fatah Wahab, Ali, J.M., Tap, A.O.M. & Majid, A.A. 2005. Geometric
modeling of uncertain region. LUMS International of Mathematical Modeling and IT. 5-7 November, Lahore
University of Management Sciences (LUMS).
Abd. Fatah Wahab, Ali, J.M., Tap, A.O.M. & Majid, A.A. 2007. Penyesuaian data ketakpastian melalui splin kabur. Prosiding. Simposium Kebangsaan Sains Matematikke XV. 4-7 Jun, UiTM, PPMM & PERSAMA.
Anile, A.M., Falcidieno,
B., Gallo, G., Spagnuolo, M. & Spinello, S. 2000. Modelling uncertain data with fuzzy B-splines, Fuzzy Sets
System 113: 397-410.
Anile, A.M., Deodato,
S. & Privitera, G. 1995. Implementing fuzzy
arithmetic Fuzzy Sets System 72: 239-250.
Castro, J.L.
1995 Fuzzy logic controlers are universal approximators. IEEE Trans. System Man. and Cybernetics 25(4):
629-635.
Gallo, G. & Spinello,
S. 2000. Fuzzy B-spline: A surface model
encapsulating uncertainty. Graphical Models 62: 40-55.
Jaccas, J., Monreal, A. & Recasens, J. 1997. A model for CAGD using fuzzy logic. International Journal of Approximate Reasoning 16:
289-308.
Jaccas, J. & Recasens, J. 1993. Fuzzy
numbers and equality relations. Proceedings FUZZ’IEEE-93 Congress. San
Francisco, CA.
Jamaludin & Abd. Fatah Wahab.
2005. Kecekapan matematik dalam reka bentuk untuk keperluan industri. Prosiding Seminar Matematik dan Masyarakat, 26-27 Februari anjuran Jabatan Matematik, FST, KUSTEM di Gem Beach Resort Kuala
Terengganu, Malaysia.
Zadeh, L.A. 1965. Fuzzy Sets. Information and Control 8(3):
338-353.
*Corresponding author; email: fatah@umt.edu.my
|