Sains Malaysiana 39(5)(2010): 837–844

 

Enhancement of the Production Yield of Fluorescent Silicon Nanostructures Using Silicon-Based Salts

(Peningkatan Hasil Pengeluaran Nanostruktur Silikon Berpendarfluor  Menggunakan Garam Berasaskan Silikon)

 

Laila H. Abuhassan*

Department of Physics, Faculty of Science

University of Jordan, Jubeiha, Amman 11942, Jordan

 

Received: 21 October 2008 / Accepted: 30 December 2009

 

ABSTRACT

 

The increase in the amount of extracted silicon nanostructures resulting from the incorporation of sodium metasilicon salt in the etching solution was investigated. Silicon nanostructures were prepared in the form of thin fluorescent films via anodisation etching of silicon wafers in aqueous HF/H2O2 solution in the presence of the silicon-based salt. The quality of the fluorescent films was assessed using several nondestructive analytical techniques. The nanostructures produced were then extracted. The harvested nanostuctures were examined for quantitative elemental analysis using atomic absorption spectrophotometry. This investigation was limited to silicon nanostructures with size ≤ 200 nm. The results indicate that the incorporation of the silicate increased the yield of silicon nanostructures production significantly.

 

Keywords: Nondestructive characterisation; nanomaterial; silicate; silicon nanostructures

 

ABSTRAK

 

Peningkatan amaun nanostruktur silikon yang diperolehi hasil gabungan garam natrium metasilikon di dalam larutan punaran telah dikaji. Nanostruktur silikon disediakan dalam bentuk filem nipis pendarfluor melalui punaran penganodan wafer silikon di dalam larutan akueus HF/H2O2 dengan kehadiran garam silikon. Kualiti filem pendarfluor dinilai menggunakan beberapa teknik analisis tanpa musnah. Nanostruktur yang dihasilkan dilakukan analisis kuantitatif bagi unsur-unsur mengggunakan spektrofotometri serapan atom. Kajian ini dihadkan kepada nanostruktur silikon bersaiz ≤ 200 nm. Keputusan menunjukkan kehadiran silikat telah meningkatkan hasil pengeluaran nanostruktur silikon dengan signifikan.

 

Kata kunci: Nanobahan; nanostruktur silikon; pencirian tanpa musnah, silikat

 

REFERENCES

 

Abuhassan, L.H. 2009. Optimization of Fluorescent Silicon Nanomaterial Production Using Peroxide/Acid/Salt Technique. Sains Malaysiana 38: 77-83.

Abuhassan, L.H. & Nayfeh, M.H. 2005. Electrodeposition of fluorescent Si nanomaterial from acidic sodium silicate solutions. Mat. Res. Soc. Symp. Proc. 862. A8: 10.

Abuhassan, L.H. & Nayfeh, M.H. 2007. Material analysis of fluorescent Si nanomaterial prepared electrochemically from sodium silicate water glass solutions. Dirasat 34: 183-191.

Baldwin, R.K. Pettigrew, K.A. Garno, J.C. Power, P.P. Liu, G-Y & Kauzlarich, S.M. 2002a. Room Temperature Solution Synthesis of Alkyl-Capped Tetrahedral Shaped Silicon Nanocrystals. J. Am. Chem. Soc. 124: 1150-1151.

Baldwin, R.K. Pettigrew, K.A. Ratai, E. Augustine, M.P. & Kauzlarich S.M. 2002b. Solution reduction synthesis of surface stabilized silicon nanoparticles. Chem. Commun. 1822-1823.

Bley, R.A. Kauzlarich, S.M. Davis, J.E. & Lee, H.W.H. 1996. Characterization of Silicon Nanoparticles Prepared from Porous Silicon. Chem. Mater. 8: 1881-1888.

Cabaniss, Stephen E. & McVey, lain F. 1995. Aqueous infrared carboxylate absorbances: aliphatic monocarboxylates. Spectrochimica Acta Part A 51: 2385-2395.

Carter R.S., Harley S.J., Power P. P. & Augustine M.P. 2005. Use of NMR Spectroscopy in the Synthesis and Characterization of Air- and Water-Stable Silicon Nanoparticles from Porous Silicon. Chem. Mater. 17: 2932-2939.

Di Nunzio, P.E. & Martelli, S. 2006. Coagulation and Aggregation Model of Silicon Nanoparticles from Laser Pyrolysis. Aerosol Science and Technology 40: 724-734.

Dumas, C. Grisolia, J. Ressier, L. Arbouet, A. Paillard, V. Ben Assayag, G. Claverie, A. Van den Boogaart, M.A.F. & Brugger, J. 2007. Synthesis of localized 2D-layers of silicon nanoparticles embedded in a SiO2 layer by a stencil-masked ultra-low energy ionimplantation process. Phys. Stat. Sol. A. 204: 487-491.

Heath, J. R. 1992. A liquid-solution-phase synthesis of crystalline silicon. Science 258(5085): 1131-1133.

Holmes, J.D. Ziegler, K.J. Doty, R.C. Pell, L.E. Johnston, K.P. & Korgel, B.A. 2001. Highly Luminescent Silicon Nanocrystals with Discrete Optical Transitions. J. Am. Chem. Soc. 123: 3743-3748.

Kobayashi, M. Liu, S-M. Sato, S. Yao, H. & Kimura, K. 2006. Optical Evaluation of Silicon Nanoparticles Prepared by Arc Discharge Method in Liquid Nitrogen. Jpn. J. Appl. Phys. 45: 6146-6152.

Kumar, S. Dixit, P.N. Rauthan, C.M.S. Parashar, A. & Gope, J. 2008. Effect of power on growth of nanocrystalline silicon films. J. Phys.: Condens. Matter 20: 335215 (7pp).

Mitas L., Therrien J., Twesten R., Belomoin G., and Nayfeh, M.H. 2001. Effect of surface reconstruction on the structural prototypes of ultrasmall ultrabright Si29 nanoparticles. Appl. Phys. Lett. 78: 1918-1920.

Nayfeh, M.H. Rogozhina, E.V. & Mitas, L. 2003. Synthesis, Functionalization and Surface Treatment of Nanoparticles, edited by Marie-Isabelle Baraton, 173-231. USA American Scientific Publishers.

Nielsen, D. Abuhassan, L.H. Alchihabi, M. Al-Muhanna, A. Host, J. & Nayfeh, M.H. 2007. Current-less Anodization of intrinsic silicon powder grains: Formation of fluorescent Si nanoparticles. J. Appl. Phys. 101: 114302 (3pp).

Risbud, S.H. Liu, L-C. & Shakelford, J.F. 1993. Synthesis and luminescence of silicon remnants formed by truncated glassmelt-particle reaction. Appl. Phys. Lett. 63: 1648-1650.

Saunders, W.A. Sercel, P.C. Lee, R.B. Atwater, H.A. Vahala, K.J. Flagan, R.C. & Escorcia- Aparcio, E.J. 1993. Synthesis of luminescent silicon nanoclusters by spark ablation. Appl. Phys. Lett. 63: 1549-1551.

Sweryda-Krawiec B. Cassagneau, T. & Fendler, J.H. 1999a. Ultrathin Electroactive Junctions Assembled from Silicon Nanocrystallites and Polypyrrole. Adv Mater. 11 (Comm.): 659-664.

Sweryda-Krawiec, B. Cassagneau, T. & Fendler, J.H. 1999b. Surface Modification of Silicon Nanocrystallites by Alcohols. J. Phys. Chem. B. 103: 9524-9529.

Swihart, M.T. Li, X. He, Y. Kirkey, W. Cartwright, A.N. Sahoo, Y. & Prasad, P.N. 2003. High-Rate Synthesis and Characterization of Brightly Luminescent Silicon Nanoparticles with Applications in Hybrid Materials for Photonics and Biophotonics. Proc. of SPIE-The International Society for Optical Engineering. 5222: 108-117.

Yamani, Z. Thompson, W.H. Abuhassan, L.H. & Nayfeh, M.H. 1997. Ideal anodization of silicon. Appl. Phys. Lett. 70: 3404-3406.

Yoshida, T. Takeyama, S. Yamada, Y. & Mutoh, K. 1996. Nanometer-sized siliconcrystallites prepared by excimer laser ablation in constant pressure inert gas. Appl. Phys. Lett. 68: 1772-1774.

Zhang X., Neiner D., Wang S., Louie A. Y., & Kauzlarich S. M. 2007. A new solution route to hydrogen-terminated silicon nanoparticles: synthesis, functionalization and water stability. Nanotechnology 18: 095601 (6pp). 

Zhu, J.G. White, C.W. Budai, J.D. Withrow, S.P. & Chen, Y. 1995. Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices. J. Appl. Phys. 78: 4386-4389.

Zhu, Y. Wang, H. & Ong, P.P. 2000. Strong and stable photoluminescence from sputtered silicon nanoparticles. J. Phys. D: Appl. Phys. 33: 1965-1968.

 

*Corresponding author; email: L.abuhassan@ju.edu.jo

 

 

 

previous