Sains Malaysiana
39(6)(2010): 1025–1030
Surface Morphology
of In0.5Ga0.5 Quantum Dots Grown using Stranski-Krastanov Growth Mode
(Morfologi Permukaan Bintik Kuantum In0.5Ga0.5As yang ditumbuhkan Menggunakan
Mod Pertumbuhan Stranski-Krastanov)
Didik Aryanto &
Zulkafli Othaman*
Department of
Physics, Faculty of Science
Universiti Teknologi
Malaysia, 81310 UTM Skudai, Johor, Malaysia
Abd. Khamim Ismail
& Amira Saryati Ameruddin
Ibnu Sina Institute
for Fundamental Science Studies
Universiti Teknologi
Malaysia, 81310 UTM Skudai, Johor, Malaysia
Received: 9 November
2009 / Accepted: 11 February 2010
ABSTRACT
In
this research an atomic force microscopy (AFM) study on self-assembled In0.5Ga0.5As/GaAs quantum dots (QDs) was performed. Surface morphology of self-assembled In0.5Ga0.5As QDs changes with different growth time. Increasing growth time
increased the dots size and decreased the dots density. In addiditon,
self-assembled In0.5Ga0.5As QDs was grown on In0.1Ga0.9As underlying layer with different after-growth AsH3 flow
time during cooling-down. The underlying layer caused lattice strain relaxation
in the QDs on the surface. Increasing the period of AsH3 flow
during cooling-down reduced the diameter of the dots and increased the density.
The migration of groups III species in the growth of In0.5Ga0.5As/GaAs system was influenced by AsH3 flow
during cooling-down period. This was due to the increase in surface population
of active arsenic species. Underlying layer and the period of AsH3 flow during cooling-down
are the two key factors in the fabrication of small and dense In0.5Ga0.5As QDs.
Keywords:
Quantum dots; Stranski-Krastanov
ABSTRAK
Dalam
makalah ini, penyelidikan mikroskop daya atom kepada bintik kuantum In0.5Ga0.5As/GaAs yang terhimpun sendiri telah dilaksanakan. Morfologi
permukaan bintik kuantum In0.5Ga0.5As/GaAs yang terhimpun sendiri berubah dengan masa penumbuhan
yang berbeza. Peningkatan masa penumbuhan meningkatkan saiz tetapi merendahkan
ketumpatan bintik. Disamping itu, bintik kuantum In0.5Ga0.5As /GaAs yang terkumpul sendiri telah ditumbuhkan di atas
lapisan bawahan In0.1Ga0.9As dengan pengaliran AsH3 selepas penumbuhan yang
berbeza semasa proses penyejukan. Lapisan bawahan telah merehatkan terikan
kekisi di dalam bintik kuantum di atas permukaan. Penambahan tempoh pengaliran
AsH3 semasa proses penyejukkan mengurangkan diameter bintik dan
menambahkan ketumpatannya. Migrasi spesis kumpulan III dalam penumbuhan sistem
In0.5Ga0.5As/GaAs adalah dipengaruhi oleh pengaliran AsH3 semasa dalam tempoh proses
penyejukkan. Ini adalah disebabkan peningkatan populasi permukaan spesies
arsenik aktif. Lapisan bawahan dan tempoh pengaliran AsH3 semasa proses penyejukkan
merupakan dua faktor penting dalam fabrikasi bintik kuantum yang kecil dan
padat.
Kata
kunci: Bintik kuantum; Stranski-Krastanov
REFERENCES
Bimberg, D. 2005. Quantum
dots for laser, amplifiers and computing. J. Appl. Phys. 38: 2055-2058
Chang, Z.Y., Jun, H.C.,
Ling, Y.X., Bo, X., Ding, D., Zheng, W.J. & Fa, L.Y. 2001. Structure and
photoluminescence of InGaAs quantum dots formed on an InAlAs wetting layer. Chin.
Phys. Lett. 18(10): 1411-1414.
Dimroth, F., Lanyi, P.,
Schubert, U. & Bett, A.W. 2000. MOVPE grown Ga1-xInxAs solar cells for
GaInP/GaInAs tandem applications. J. Electronic Materials 29: 42-46.
Germann, T.D.,
Strittmatter, A., Kettler, Th., Posilovic, K., Pohl, U.W. & Bimberg, D.
2007. MOCVD of InGaAs/GaAs quantum dots for laser emitting close to 1.3
μm. J. Crystal Growth 298: 591-594.
Hanke, M., Grigoriev, D.,
Schmidbauer, M., Schӓfer, P., Kšhler, R.,
Pohl, U.W., Sellin, R. L., Bimberg, D., Zakharov, N.D. & Werner, P. 2004.
Diffuse X-ray scattering of InGaAs/GaAs quantum dots. Physica E 21:
684-688.
Hsu, M.Y., Tang, S.F.,
Chiang, C.D., Su, C.C., Wang, L.C. & Kuo, C.T. 2006. Optical recombination
emission characteristics and surface morphologies of InAs quantum dots grown on
misoriented GaAs substrate by MOCVD. J. Thin Solid Films 498: 183-187.
Ishihara, T., Lee, S.,
Akabori, M., Motohisa, J. & Fukui, T. 2002. Dependence on In content of
InGaAs quantum dots grown along GaAs multiatomic steps by MOVPE. J. Crystal
Growth 237-239: 1476-1480.
Jiang, L., Li, S.S., Liu,
W.S., Yeh, N.T. & Chyi, J.I. 2005. A two-stack, multi-color In0.5Ga0.5As/GaAs and lnAs/GaAs
quantum dot infrared photodetector for long wavelength infrared detection. Infrared
Physics & Technology 46: 249-256.
Jiang, W.H., Xu, H.Z., Xu,
B., Wu, J., Ye, X. L., Liu, H.Y., Zhou, W., Sun, Z.Z., Li, Y.F., Liang, J.B.
& Wang, Z.G. 1999. Fabrication of InGaAs quantum dots with an underlying
InGaAlAs layer on GaAs(100) and high index substrates by molecular beam
epitaxy. J. Crystal Growth 205: 607-612.
Joyce, P.B., Krzyewski,
T.J., Steans, P.H., Bell, G.R., Neave, J.H. & Jones, T.S. 2001. Shape and
surface morphology changes during the initial stages of encapsulation of
InAs/GaAs quantum dots. J. Surface Science 492: 345-355.
Kim, J.O., Lee, S.J., Noh,
S.K., Ryu, Y.H., Choi, S.M. & Choe, J.W. 2005. Laterally self-aligned
InGaAs/GaAs quantum dots fabricated by using a multilayer stacking technique. J.
Korean Physical Society 47(1): 94-99.
Kim, J.S. & Kim, J.S.
2006. Formation of InAs/GaAs quantum dots by alternating growth of InAs and
GaAs with a quasi monolayer thickness. J. Korean Physical Society 49(1):
195-198.
Kitamura, M., Nishioka,
M., Schur, R. & Arakawa. Y. 1997. Direct observation of the transition from
a 2D layer to 3D islands at the initial stage of InGaAs growth on GaAs by AFM. J.
Crystal Growth 170: 563-567.
Kita, T., Yamashita, K.,
Tango, H. & Nishino, T. 2000. Dynamic process of two-dimensional InAs
growth in Stranski-Krastanov mode. Physica E 7: 891-895.
Kladko, V.P., Strelchuk,
V.V., Kolomys, A.F., Slobodian, M.V., Mazur, Y.I., Wang, Z.H. M., Kunets, V.P. &
Salamo. G.J. 2007. Microstructural aspects of nucleation and growth of
(In,Ga)As/GaAs(100) island with low indium content. J. Electronic Materials 36:
1555-1560.
Leon, R., Wellman, J.,
Liao, X. Z., Zou, J. & Cyokayne, D.J.H. 2000. Adatom condensation and
quantum dots sizes in InGaAs/GaAs(001). Appl. Phys. Lett. 76(12):
1558-1560.
Ng, J. & Missous, M.
1996. Improvement of Stacked self-assembled InAs/GaAs Quantum Dots Structures
for 1.3 μm Applications. J. Microelectronics 37: 1446-1450.
Offermans, P., Koenraad,
P.M., Wolter, J.H., Pierz, K., Roy, M. & Maksym, P.A. 2005. Formation of
InAs quantum dots and wetting layers in GaAs and AlAs analyzed by
cross-sectional scanning tunneling microscopy. Physica E 26: 236-240.
Osborn, K.D., Keller, M.W.
& Mirin, R.P. 2004. Single-electron transistor spectroscopy of InGaAs
self-assembled quantum dots. Physica E 21: 501-505.
Riel, B.J., Hinzer, K.,
Moisa, S., Fraser, J., Finnie, P., Piercy, P., Fafard, S. & Wasilewski, Z.
2002. InAs/GaAs(100) self-assembled quantum dots, arsenic pressure and capping
effects. J. Crystal Growth 236: 145-154.
Sears, K., Mokkapati, S.,
Tan, H.H. & Jagadish, C. 2008. In(Ga)As/GaAs quantum dots grown by MOCVD
for opto-electronic device applications. In Self-assembled quantum dots,
edited by Z.M. Wang. New York: Springer pp. 359-403.
Son , J.Y. & Cho, J.H.
2008. Stranski-Krastanov (SK) growth mode of layered g-Na0.7CoO2 on (111) SrTiO3 substrate. J. Crystal Growth 310(12): 3093-3096.
Srinivasan, T., Singha,
S.N., Tiwari, U., Sharma, R.K., Muralidharan, R., Rao, D.V.S,
Balamuralikrishnan, R. & Muraleedharan, K. 2005. Structural and
photoluminescence characteristics of molecular beam epitaxy-grown vertically
aligned In0.33Ga0.67As/GaAs quantum dots. J. Crystal Growth 280: 378-384.
Wang, B., Chua, S-J.,
Dong, J. & Wang, Y. 2006. Highly strained quantum structures grown on GaAs
(001) vicinal substrate by MOCVD. J. Crystal Growth 288: 61-64.
Xie, Q., Brown, J.L.,
Jones, R.L. & Nostrand, J.E.V. 1999. Shape stabilization and size
equalization of InGaAs self-organized quantum dots. J. Electronic Materials 28(12):
L42-L45.
Xu, M. C., Temko, Y.,
Suzuki, T. & Jacobi, K. 2005. InAs wetting layer evolution on GaAs(001). J.
Surface Science 580: 30-38.
Xu, S.J., Chua, S.J., Mei,
T., Wang, X.C., Zhang, X.H., Karunasiri, G., Fan, W.J., Wang, C.H., Jiang, J.,
Wang, S. & Xie, X.G. 1998. Characteristics of InGaAs quantum dot infrared
photodetectors. Appl. Phys. Lett. 73: 3153-3155.
*Corresponding author;
e-mail: zulothaman@gmail.com
|