Sains Malaysiana
39(6)(2010): 1041–1048
Improving Pipelined
Time Stepping Algorithm for Distributed Memory Multicomputers
(Menambahbaik Algoritma Sela-Masa Penalian Paip bagi
Multikomputer Memori Teragih)
Ng Kok Fu* &
Norhashidah Hj. Mohd. Ali
School of Mathematical
Sciences, Universiti Sains Malaysia
11800 Penang, Malaysia
Received: 19 May 2009 /
Accepted: 1 June 2010
ABSTRACT
Time
stepping algorithm with spatial parallelisation is commonly used to solve time
dependent partial differential equations. Computation in each time step is
carried out using all processors available before sequentially advancing to the
next time step. In cases where few spatial components are involved and there
are relatively many processors available for use, this will result in fine
granularity and decreased scalability. Naturally one alternative is to
parallelise the temporal domain. Several time parallelisation algorithms have
been suggested for the past two decades. One of them is the pipelined
iterations across time steps. In this pipelined time stepping method,
communication however is extensive between time steps during the pipelining
process. This causes a decrease in performance on distributed memory
environment which often has high message latency. We present a modified
pipelined time stepping algorithm based on delayed pipelining and reduced
communication strategies to improve overall execution time on a distributed
memory environment using MPI. Our goal is to reduce the inter-time step communications while
providing adequate information for the next time step to converge. Numerical
result confirms that the improved algorithm is faster than the original
pipelined algorithm and sequential time stepping algorithm with spatial
parallelisation alone. The improved algorithm is most beneficial for fine
granularity time dependent problems with limited spatial parallelisation.
Keywords:
Distributed memory multicomputer; parallel time stepping; pipelining iteration;
time dependent problem
ABSTRAK
Algoritma
sela-masa dengan penyelarian ruang umumnya digunakan untuk menyelesaikan
persamaan pembezaan separa bersandar masa. Pengiraan pada setiap sela masa
dilakukan dengan menggunakan kesemua pemproses yang sedia ada sebelum mara ke
sela masa berikutnya. Dalam kes dengan sedikit sahaja komponen ruang yang
terlibat dan terdapat banyak pemproses untuk digunakan, algoritma ini akan
mengakibatkan kegranulan halus dan pengurangan skalabiliti. Lazimnya satu
alternatif dalam kes begini adalah menyelarikan domain masa. Beberapa algoritma
penyelarian masa telah dicadangkan sepanjang dua dekad yang lalu. Salah satu
daripadanya ialah lelaran penalian paip merentasi sela masa. Walau bagaimanapun
dalam kaedah sela masa penalian paip ini, komunikasi di antara sela masa
berlaku secara meluas sepanjang proses penalian paip. Ini mengakibatkan
penurunan prestasi dalam persekitaran memori teragih yang lazimnya mempunyai
latensi mesej yang tinggi. Kami mencadangkan satu algoritma sela-masa penalian
paip terubahsuai berdasarkan strategi penalian paip tertangguh dan pengurangan
komunikasi bagi memperbaiki masa pelaksanaan keseluruhan dalam persekitaran
memori teragih menggunakan MPI. Tujuan kami ialah mengurangkan komunikasi antara sela masa di
samping menyediakan maklumat yang mencukupi bagi penumpuan pada sela masa
berikutnya. Keputusan berangka menunjukkan algoritma yang ditambahbaik ini
adalah lebih pantas berbanding dengan algoritma penalian paip asal dan
algoritma sela-masa dengan penyelarian ruang sahaja. Algoritma yang
ditambahbaik ini adalah paling berguna bagi masalah bersandar masa
berkegranulan halus dengan penyelarian ruang yang terhad.
Kata
kunci: Masalah bersandar masa; multikomputer memori teragih; lelaran penalian
paip; sela-masa selari
REFERENCES
Ali, N.H.M. & Ng, K.F. 2006. Explicit group PDE solvers in
an MPI environment. International Conference on Mathematical Modelling and
Computation, June 5-8, Universiti Brunei Darussalam.
Bonomo, J.P. & Dyksen, W.R. 1981. Pipelined iterative
methods for shared memory machines. Technical Report 688, Computer
Science Department, Purdue University.
Frantziskonis, G., Muralidharan, K., Deymier, P., Simunovic, S.,
Nukala, P. & Pannala S. 2009. Time-parallel multiscale/multiphysics
framework. J. Comput. Phys. 228: 8085-8092.
Gropp, W., Lusk, E. & Skjellum, A. 1999. Using MPI:
Portable parallel programming with the message-passing interface.
Cambridge, MA: MIT Press.
Horton, G. & Vandewalle, S. 1995. A space-time multigrid
method for parabolic PDEs. SIAM J. Sci. Computing 16(4): 848-864.
Lions, J-L., Maday, Y. & Turinice, G. 2001. A “parareal” in time discretization
of PDE’s. C. R. Acad. Sci. Paris Ser. I Math. 332: 661-668.
Ng, K.F. & Ali, N.H.M. 2008. Performance analysis of
explicit group parallel algorithms for distributed memory multicomputer. Parallel
Computing 34(6-8): 427-440.
Pacheco, P.S. 1997. Parallel Programming with MPI. San
Francisco: Morgan Kaufmann Publishers.
Pormann, J.B., Board, J.A. Jr. & Rose, D.J. 1998. The implicit pipeline
method. Proceedings of the 12th. International Parallel Processing Symposium
on International Parallel Processing Symposium. IEEE Computer Society,
Washington, DC721-725.
Srinivasan, A. & Chandra, N. 2005. Latency tolerance through parallelization of
time in scientific applications. Parallel Computing 31(7): 777-796.
Womble, D.E. 1990. A time stepping algorithm for parallel
computers. SIAM J. Sci. Computing 11(5): 824-837.
Zhu, J. 1994. Solving partial differential equations on
parallel computers. Singapore: World Scientific Publishing.
*Corresponding author; email: ngkokfu@gmail.com
|