Sains Malaysiana 39(6)(2010):
935–940
Modeling
Population Harvesting of Rodents for the Control of Hantavirus Infection
(Pemodelan
Proses Populasi Penuaian Tikus bagi Mengawal Jangkitan Hantavirus)
F.M.Yusof*,
A.I.B. Md. Ismail & N.H.M. Ali
School
of Mathematical Sciences
Universiti
Sains Malaysia, 11800 USM, Penang,
Malaysia
Received:
17 November 2009 / Accepted: 21 May 2010
ABSTRACT
Hantaviruses
are infectious agents that can cause diseases resulting in deaths in humans and
are hosted by rodents without affecting the hosts themselves. A simple
mathematical model describing the spread of the Hantavirus infection in rodents
has been proposed and developed by Abramson and Kenkre where the model takes
into account the temporal and spatial characteristics of this infection. In
this paper, we extended this model to include the process of harvesting and
study the impact of different harvesting strategies in the spread of the
Hantavirus infection in rodents. Several numerical simulations were carried out
and the results are discussed.
Keywords:
Hantavirus; harvesting; mathematical model; numerical simulations
ABSTRAK
Hantavirus
adalah ejen jangkitan penyakit yang boleh menyebabkan kematian di kalangan
manusia dan berperumahkan tikus tanpa memberi kesan kepada perumah itu sendiri.
Model matematik mudah yang menjelaskan pembiakan jangkitan hantavirus ke atas
tikus telah dicadang dan dibangunkan oleh Abramson dan Kenkre dengan model
tersebut mengambilkira ciri ruang dan masa jangkitan ini. Dalam makalah ini, kami
meluaskan model ini dengan memasukkan proses penuaian dan mengkaji kesan
strategi penuaian yang berbeza ke atas pembiakan jangkitan hantavirus ke atas
tikus. Beberapa simulasi berangka telah dijalankan dan keputusan dibincangkan.
Kata
kunci: Hantavirus; penuaian; model matematik; simulasi berangka
REFERENCES
Abdul
Karim, M.F., Ismail, A.I. & Ching, H.B. 2009. Cellular automata modeling of
hantavirus infection, Chaos, Solitons & Fractals 41(5): 2847-2853.
Abramson,
G. & Kenkre, V.M. 2002. Spatiotemporal patterns in the hantavirus
infection, Physical Review E 66:
011912-1-5.
Abramson,
G., Kenkre, V.M., Yates, T. & Parmenter, R.R. 2003. Traveling waves of
infection in the hantavirus epidemics, Bulletin of Mathematical Biology 65:
519-534.
Bairagi,
N., Chaudhuri, S. & Chattopadhyay, J. 2009. Harvesting as a disease control
measure in an eco-epidemiological system - A theoretical study, Mathematical
Biosciences 217(2): 134-144.
Cross,
A., McGuire, G. & Tashian, C. 1998. Logistic growth with harvesting
(Online) Available: http://tashian.com/carl/docs/harvesting/ (accessed 27 April
2006).
Giuggioli,
L., Kenkre, V.M., Abramson, G. & Camelo-Neto, G. 2006. Theory of hantavirus
infection spread incorporating localized adult and itinerant juvenile mice, Eur.
Phys. Jour. B 55: 461-470.
Goh,
S.M., Ismail, A.I.M., Noorani, M.S.M. & Hashim, I. 2009. Dynamics of the
hantavirus infection through variational iteration method (VIM), Nonlinear
Analysis: Real World Applications 10(4): 2171-2176.
Hjelle,
B. 2007. Pathogenesis of hantavirus infection. (Online) Available: http://
patients.uptodate.com/topic.asp?file=viral_in/24412 (accessed June 2007).
Idels,
L.V. & Wang, M. 2008. Harvesting fisheries management strategies with
modified effort function, International Journal of Modelling, Identification
and Control 3(1): 83-87.
Matsuoka,
T. & Seno, H. 2008. Ecological
balance in the native population dynamics may cause the paradox of pest control
with harvesting, Journal of Theoretical Biology 252(1): 87-97.
Miner,
R. & Wicklin, F. 1996. Modeling population growth: harvesting. (Online)
Available: http://www.geom.uiuc.edu/education /calc-init /population
/harvest.html (accessed 24 June 2007).
Peixotu,
I. D. & Abramson, G. 2006. The effect of biodiversity on the hantavirus
epizootic, Ecology 87(4): 873-879.
*Corresponding
author; email: fauzikmk@hotmail.com
|