Sains
Malaysiana 40(10)(2011): 1105–1113
Quantitative Determination of
Ammonium Ion in Aqueous Environment
Using Riegler’s Solution and
Artificial Neural Network
(Penentuan
Kuantitatif Ion Ammonium dalam Persekitaran Akueus Menggunakan Larutan Riegler
dan Jaringan Neural
Tiruan)
Tan Ling Ling, Musa
Ahmad & Lee Yook Heng*
School
of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia
43600
Bangi, Selangor D.E. Malaysia
Received: 12 August 2008/Accepted:
22 April 2009
ABSTRACT
A quantitative analysis has
been conducted to determine the concentration of ammonium (NH4+) ion in solution by
using Ultraviolet-visible spectrophotometry method and artificial neural
network (ANN). Riegler’s
reagent was used to form Riegler-NH4+ complex. The
characterisations of Riegler’s reagent in solution such as photostability, pH
effect, reagent concentration, dynamic range and reproducibility were
conducted. The colour change of the Riegler’s reagent after reaction with NH4+ was yellow to red. The Riegler’s reagent responds linearly to NH4+ ion concentration in the range of 1-7 ppm with optimum response
at pH7. Satisfactory reproducibility (2.0-2.8%) were obtained with this
reagent. The effect of interfering ions that may contain in the leachate on the
determination of NH4+ ion was also studied.
The application of ANN enabled
the extension of the useful dynamic concentration range of NH4+ ion to 1–24 ppm. The
best ANN architecture
for Riegler-NH4+ complex was built from 29 hidden neurons, 21,389 epochs number
and 0.001% learning rate which produced sum square error (SSE)
value of 0.0483 with an average calibration error of 1.4136.
Keywords: Ammonium ion;
artificial neural network; Riegler’s reagent; ultraviolet-visible
spectrophotometry
ABSTRAK
Analisis kuantitatif telah
dilakukan untuk menentukan kepekatan ion ammonium (NH4+) dalam larutan dengan
menggunakan kaedah spektrofotometri utralembahyung-nampak dan jaringan neural
tiruan (ANN). Reagen
Riegler telah digunakan untuk membentuk kompleks Riegler-NH4+. Pencirian terhadap
reagen Riegler dalam larutan termasuk analisis kestabilan foto reagen, kesan
pH, kesan kepekatan reagen, julat kepekatan dinamik dan kebolehulangan telah
dilakukan. Perubahan warna reagen Riegler selepas bertindak balas dengan NH4+ adalah kuning ke merah. Reagen Riegler memberi rangsangan linear
kepada ion NH4+ dalam julat 1-7 ppm dengan rangsangan optimum pada pH7.
Kebolehulangan yang memuaskan (2.0-2.8%) telah diperolehi dengan reagen ini.
Kesan ion pengganggu yang boleh didapati dalam air larut lesap dalam penentuan
ion NH4+ juga dikaji. Penggunaan ANN telah
berupaya memanjangkan julat kepekatan dinamik ion NH4+ sehingga julat kepekatan
1 – 24 ppm. Arkitektur jaringan ANN yang
terbaik untuk kompleks Riegler-NH4+ dibina daripada 29
neuron terlindung, 21,389 unit bilangan kitaran dan kadar pembelajaran 0.001%
yang menghasilkan nilai ralat jumlah kuasa dua (SSE) sebanyak 0.0483 dengan
purata ralat sebanyak 1.4136.
Kata kunci: Ion ammonium; jaringan neural tiruan; reagen Riegler’s;
spektrofotometri utralembahyung-nampak
REFERENCES
Abass, A.K.,
Hart, J.P., Cowell, D.C. & Chappell, A. 1998. Development of an
amperometric assay for NH4+ based
on a chemically modified screen-printed NADH sensor. Analytica Chimica Acta 373:
1-8.
Aminot, A.,
Kerouel, R. & Birot, D. 2001. A flow injection-fluorometri method for the
determination of ammonium in fresh and saline waters with a view to in situ analyses. Wat. Res. 35(7): 1777-1785.
Andrew, K.N.,
Worsfold, P.J. & Comber, M. 1995. On-line flow injection monitoring of
ammonia in industrial liquid effluents. Analytica Chimica Acta 314:
33-43.
Azizul Isha, Nor
Azah Yusof, Musa Ahmad, Dedy Suhendra, Wan Md Zin Wan Yunus & Zulkarnain
Zainal. 2006. A chemical sensor for trace V(V) ion determination based fatty
hydroxamic acid immobilised in polymethylmethacrylate. Sensor and Actuators
B 114: 344-349.
Boer, W.D.,
Gunnewiek, P.A.K., Laanbroek, H.J. 1995. Ammonium-oxidation at low pH by a
chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil
Biol. Biochem. 27: 127132.
Chang, R. 2002. Chemistry (7th Ed.) New York: Mc Graw Hill.
Cherian, T.
& Narayana, B. 2006. A new system for the spectrophotometric determination
of trace amounts of nitrite in environmental samples. J. Braz. Chem. Soc. 17(3):
577-581.
Deyhimi, F.
& Choobar, B.G. 2005. Potentiometric determination of activity coefficients
for NH4Cl in the ternary
NH4Cl/LiCl/H2O mixed electrolyte
system. Journal of Electroanalytical Chemistry 584: 141-146.
Faiz Bukhari
Mohd Suah, Musa Ahmad & Mohd Nasir Taib. 2003a. Applications of artificial
neural network on signal processing of optical fibre pH sensor based on
bromophenol blue doped with sol-gel film. Sensors and Actuators B 90:
182-188.
Faiz Bukhari
Mohd Suah, Musa Ahmad & Mohd Nasir Taib. 2003b. Optimisation of the range
of an optical fibre pH sensor using feed-forward artificial neural network. Sensors
and Actuators B 90: 175-181.
Hassan, S.S.M.,
Marei, S.A., Badr, I.H. & Arida, H.A. 2001. Novel solid-state ammonium ion potentiometric
sensor based on zirconium titanium phosphate ion exchanger. Analytica
Chimica Acta 427: 21-28.
Icardo, M.C.,
Torro, I.G., Zamora, L.L. & Calatayud, J.M. 1999. Flow spectrophotometric
determination of ammonium ion. Analytica Chimica Acta 398: 311-318.
Krishnan, G.
2006. They’re dragging their feet. The Star 25(4): 12.
Kuo, C.T., Wang,
P.Y. & Wu, C.H. 2005. Fluorometric determination of ammonium ion by ion
chromatography using postcolumn derivatization with o-phthaldialdehyde. Journal
of Chromatography A 1085: 91-97.
Kwan, R.C.H.,
Hon, P.Y.T. & Renneberg, R. 2005. Amperometric determination of ammonium
with bienzyme/poly(carbamoyl) sulfonate hydrogel-based biosensor. Sensors
and Actuators B 107: 616-622.
Li, Q.P., Zhang,
J.Z., Millero, F.J. & Hansell, D.A. 2005. Continuous colorimetric
determination of trace ammonium in seawater with a long-path liquid waveguide
capillary cell. Marine Chemistry 107: 73-85.
Nor Azah Yusof
& Musa Ahmad. 2002. A flow cell optosensor for lead based on immobilised
gallocynin in chitosan membrane. Talanta 58: 459-466.
Parham, H. &
Mobarakzadeh, M. 2002. Solvent extraction-spectrophotometric determination of
trace amounts of ammonium, barium and potassium in a mixture by
dicyclohexyl-18-crown-6 and orange II. Talanta 58: 281-287.
Pranaityte, B.,
Jermak, S., Naujalis, E. & Padarauskas, A. 2007. Capillary electrophoretic
determination of ammonia using headspace single-drop microextraction. Microchemical
Journal 86: 48-52.
Renault, N.J.,
Senillou, A., Martelet, C., Wan, K. & Chovelon, J.M. 1999. ISFET
mocrosensors for the detection of pollutants in liquid media. Sensors and
Actuators B 59: 154-164.
Robert, C.W.
1972. Handbook of Chemistry and Physics (53rd ed.) Cranwood
Parkway: The Chemical Rubber Co.
Senthilkumar, M.
& Selvakumar, N. 2005. Achieving expected depth of shade in reactive dye
application using artificial neural network technique. Dyes and Pigments 68:
89-94.
Staden, J.F.V.
& Taljaard, R.E. 1997. Determination of ammonia in water and industrial
effluent streams with the indophenol blue method using sequential injection
analysis. Analytica Chimica Acta 344: 281-289.
Strotmann, U.J.
& Windecker, G. 1997. Kinetics of ammonium removal with suspended and
immobilized nitrifying bacteria in different reactor systems. Chemosphere 35:
2939-2952.
Taylor, A.E.
& Bottomley, P.J. 2006. Nitrite production by Nitrosomonas europaea and Nitrosospira sp. AV in soils at different solution concentrations of
ammonium. Soil Biology & Biochemistry 38: 828-836.
Trinkel, M.,
Trettnak, W., Reininger, F., Benes, R., O’Leary, P. & Wolfbeis, O.S. 1996.
Study of the performance of an optochemical sensor for ammonia. Analytica
Chimica Acta 320: 235-243.
Vogel, A.I. 1979. Textbook of
Macro and Semimicro Qualitative Inorganic Analysis (5th ed.)
London: Longman Group Limited.1113
*Corresponding author; email: yh11000@ukm.my
|