Sains Malaysiana 40(11)(2011): 1271–1276

 

Penyingkiran Boron daripada Larutan Akuas Menggunakan Penjerap

Komposit Berasaskan Karbon-Mineral

(Boron Removal from Aqueous Solutions using Composite Adsorbent Based on Carbon-Mineral)

 

Nor Hasleda Mamat @ Alias, Azhar Abdul Halim* & Muhammad Ikram A Wahab

Program Kesihatan Persekitaran, Fakulti Sains Kesihatan Bersekutu, Universiti Kebangsaan Malaysia

Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

 

Received: 10 December 2009/ Accepted: 17 January 2011

 

 

ABSTRACT

 

Boron removal from aqueous solutions by adsorption was investigated using composite adsorbent that combine zeolite, limestone, activated carbon and rice husk charcoal waste. In this study, the optimum parameters such as pH, optimal contact time and adsorbent dosage were observed. In addition, adsorption isotherm studies and adsorption kinetics were made. In this study, the maximum boron removal was obtained at pH5 and the optimum contact time was 120 min. The optimal dose of composite adsorbent to remove boron in aqueous solutions is about 280 g/L which can remove about 50.49%. In the isotherm studies, Langmuir and Freundlich isotherm models were applied and it was determined that the experimental data conformed to Langmuir isotherm model (R2 = 0.8792). The adsorption capacity (qm) obtained from Langmuir isotherm model was 1.8985 mg/g. Kinetics studies were performed to understand the mechanistic steps of the adsorption process and the rate kinetics for the adsorption of boron was best fitted with the second-order kinetic model. The correlation coefficients obtained for second-order kinetic model was 0.9929. It is suggested that the boron adsorption is likely influenced by the chemical process.

 

Keywords: Adsorption; boron; carbon-mineral adsorbents

 

 

ABSTRAK

Penyingkiran boron dalam larutan akuas secara penjerapan telah dikaji dengan menggunakan penjerap komposit yang menggabungkan zeolit, batu kapur, karbon teraktif dan buangan arang sekam padi. Parameter optimum seperti pH, masa sentuhan optimum dan dos bahan penjerap dikaji. Kajian isoterma penjerapan dan kinetik penjerapan turut dijalankan. Hasil penyelidikan menunjukkan penyingkiran boron paling optimum berlaku pada pH5 dan masa sentuhan optimum ialah pada minit ke 120. Dos optimum bagi penyingkiran boron dalam larutan akuas ialah pada dos 280 g/L dan penyingkiran yang dapat dilakukan ialah sebanyak 50.49%. Dalam kajian isoterma, model isoterma Langmuir dan Freundlich telah diaplikasikan dan hasil kajian membuktikan bahawa kajian isoterma penjerapan adalah mematuhi model isoterma Langmuir (R2 = 0.8792). Nilai kapasiti penjerapan maksimum (qm) yang diperoleh daripada model isoterma Langmuir adalah 1.8985 mg/g. Kajian kinetik penjerapan dijalankan untuk mengetahui mekanisme proses penjerapan dan hasil kajian menunjukkan kadar kinetik bagi penjerapan boron ini adalah mematuhi model kinetik tertib kedua. Pekali korelasi yang diperoleh untuk model kinetik tertib kedua ini adalah 0.9929. Ini mencadangkan bahawa kinetik penjerapan boron adalah dipengaruhi oleh proses kimia.

 

Kata kunci: Bahan penjerap karbon-mineral; boron; penjerapan

 

 

REFERENCES

 

Aksu, Z. & Gonen, F. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochemical 39(3): 599-613.

APHA. 2005. Standard Methods for Examination of Water and Wastewater. Ed. ke-21. Washington: American Public Health Association.

ATSDR. 2007. Toxicological Profile for Boron. Atlanta: Agency for Toxic Substances and Disease.

Azhar Abdul Halim, Hamidi Abdul Aziz, Megat Azmi Megat Johari & Kamar Shah Ariffin. 2010. Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination 262(1-3): 31-35.

Aziz, H.A. 1997. Heavy metals removal from water and wastewater using limestone filtration technique: a potential use for small and medium industries. Journal of the Institution of Engineers Malaysia (IEM) (3): 27-35.

Badruk, M., Kabay, N., Demircioglu, M., Mordogan, H. & Ipekoglu, U. 1999. Removal of boron from wastewater of geothermal power plant by selective ion-exchange resins part II. Column sorption-elution studies. Separation and Purification Technology 34(15): 2981-2995.

Bhattacharya, A.K., Mandal, S.N. & Das, S.K. 2007. Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chemical Engineering Journal 21(5): 43-51.

Cangeloglu, Y., Tor, A., Arslan, G., Ersoz, M. & Gezgin, S. 2007. Removal of boron from from aqueous solution by using neutralized red mud. Journal of Hazardous Material 142: 412-417.

DOE. 1995. Environmental Quality Act 1974 and Regulations, Details on Environmental Quality Act 1974 and Regulations Amendments From 1980 to January 1995. MDC Publishers Printers Sdn. Bhd.

Erenturk, S. & Malkoc, E. 2006. Removal of lead (ii) by adsorption onto Viscum album L: effect of temperature and equilibrium isoterm analysis. Applied Surface Sciences 253(10): 4727-4733.

Karahan, S., Yurdakoc, M., Seki, Y. & Yurdakoc, K. 2005. Removal of boron from aqueous solution by clays and modified clays. Journal of Colloid and Interfere Science 293: 36-42.

Leboda, R. 1992a. Effect of silica gel quantity on the course of hydrothermal treatment in an autoclave. Mater. Chem. Phys. 31(3): 243-255.

Leboda, R. 1993b. Carbon-mineral adsorbents-surface properties and methods of their modification. Mater. Chem. Phys. 34(2): 123-141.

Leboda, R. 1993c. Effect of silica gel quantity on the course of hydrothermal treatment in an autoclave. Mater. Chem. Phys. (3): 243-255.

Meghea, A., Rehner, H.H., Peleanu, I. & Mihalache, R. 1998. J. Radioanal. Nucl. Chem. 229: 105-110.

Nacera, Y. & Aicha, B. 2005. Kinetic models for the sorption of dye from aqueous solution by clay-wood sawdust mixture. Desalination 185: 499-508.

Ozturk, N. & Kavak, D. 2005. Adsorption of boron from aqueous solutions using fly ash: batch and column studies. Journal of Hazardous Material 127: 81-88.

Smith, B.M., Todd, P. & Bowmann, C.N. 1995. Separation Science Technology 20: 3849.

Thomas, J.M. & Thomas, W.J. 1997. Principle and Practice of Heterogeneous Catalysis. Weinheim: VCH.

Yilmaz, A.E., Boncukcuoglu, R. & Kocakerim, M.M. 2005. Adsorption of Boron-containing wastewater by ion exchange in a continuous reactor. Journal of Hazardous Material 117(3): 221-226.

Yılmaz, A.E., Boncukcuoglu, R. & Kocakerim, M.M. 2007. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewater by electrocoagulation. Journal of Hazardous Material 144: 101-107.

 

 

*Corresponding author; email: azharabdulhalim@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

previous