Sains Malaysiana 40(12)(2011): 1345–1353

 

Chemical Synthesis of Metal Nanoparticles in Aqueous Solutions with  the Presence of Some Additives

(Sintesis Kimia Nanozarah Logam dalam Air dengan Kehadiran Beberapa Bahan Penambah)

 

Munetaka Oyama*

Department of Material Chemistry, Graduate School of Engineering

Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan

 

Akrajas Ali Umar, Muhamad Mat Salleh & Burhanuddin Yeop Majlis

Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

 

Received: 10 December 2010 / Accepted: 20 January 2011

 

 

ABSTRACT

 

Metal nanoparticles having interesting shapes can be prepared in aqueous solutions through simple reductions of metal ions with the presence of some additive reagents, such as cetyltrimethylammonium bromide and hexamethylenetetramine. In this review, some successful results for shape-controlled synthesis of metal nanoparticles in our group are summarized, which includes the synthesis of palladium nanocubes, palladium nanobricks, gold nanotripods. In addition, combining with indium tin oxide electrode surfaces, shape-controlled growth is shown to be possible to form gold nanoplates and copper oxide nanowires. Even in relatively mild synthetic conditions, interesting shape-controlled synthesis of metal nanoparticles is possible.

 

Keywords: Metal nanoparticle; nanobrick; nanocube; nanotripod

 

ABSTRAK

 

Nanozarah logam dengan bentuk yang menarik dapat disediakan dalam larutan berair melalui proses penurunan sederhana ion logam dengan kehadiran beberapa bahan tambah reagen, seperti setiltrimetilamonium bromida dan heksametilentetramina. Dalam tinjauan ini, dikemukakan beberapa hasil sintesis nanozarah logam dengan bentuk terkawal yang berjaya disediakan oleh kumpulan kami, iaitu meliputi sintesis nanokubus dan nanobata paladium serta nanotripod emas. Di samping itu, dikemukakan usaha penumbuhan nanoplat emas dan nanowayar kuprum oksida di atas permukaan elektrod indium timah oksida. Meskipun hanya dengan menggunakan keadaan sintesis kimia yang sederhana, nanozarah logam dengan bentuk terkawal boleh disediakan.

 

Kata kunci: Nanobata; nanokubus; nanoplat; nanotripod; nanozarah logam

 

REFERENCES

 

Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A. & El-Sayed, M.A. 1996. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science 272: 1924-1925.

Ali Umar, A. & Oyama, M. 2006. Formation of Gold Nanoplates on Indium Tin Oxide Surface: Two-Dimensional Crystal Growth from Gold Nanoseed Particles in the Presence of Poly(vinylpyrrolidone). Crystal Growth & Design 6(4): 818-821.

Ali Umar, A. & Oyama, M. 2007. A Seed-Mediated Growth Method for Vertical Array of Single-Crystalline CuO Nanowires on Surfaces. Crystal Growth & Design 7(12): 2404-2409.

Ali Umar, A. & Oyama, M. 2008. Synthesis of Palladium Nanobricks with Atomic-Step Defects. Crystal Growth & Design 8(6): 1808-1811.

Ali Umar, A. & Oyama, M. 2009. High-Yield Synthesis of Tetrahedral-Like Gold Nanotripods Using an Aqueous Binary Mixture of Cetyltrimethylammonium Bromide and Hexamethylenetetramine. Crystal Growth & Design 9(2): 1146-1152.

Ali Umar, A., Oyama, M., Mat Salleh, M. & Yeop Majlis, B. 2009. Formation of High-Yield Gold Nanoplates on the Surface: Effective Two-Dimensional Crystal Growth of Nanoseed in the Presence of Poly(vinylpyrrolidone) and Cetyltrimethylammonium Bromide. Crystal Growth & Design 9(6): 2835-2840.

Ali Umar, A., Oyama, M., Mat Salleh, M. & Yeop Majlis, B. 2010. Formation of Highly Thin, Electron-Transparent Gold Nanoplates from Nanoseeds in Ternary Mixtures of Cetyltrimethylammonium Bromide, Poly(vinyl pyrrolidone), and Poly(ethylene glycol). Crystal Growth & Design 10(8): 3694-3698.

Chang, G., Oyama, M. & Hirao, K. 2006a. In Situ Chemical Reductive Growth of Platinum Nanoparticles on Indium Tin Oxide Surfaces and Their Electrochemical Applications. The Journal of Physical Chemistry B 110(4): 1860-1865.

Chang, G., Oyama, M. & Hirao, K. 2006b. Seed-Mediated Growth of Palladium Nanocrystals on Indium Tin Oxide Surfaces and Their Applicability as Modified Electrodes. The Journal of Physical Chemistry B 110(41): 20362-20368.

Chang, G., Oyama, M. & Hirao, K. 2007. Facile synthesis of monodisperse palladium nanocubes and the characteristics of self-assembly. Acta Materialia 55(10): 3453-3456.

Chang, G., Zhang, J., Oyama, M. & Hirao, K. 2005. Silver-Nanoparticle-Attached Indium Tin Oxide Surfaces Fabricated by a Seed-Mediated Growth Approach. The Journal of Physical Chemistry B 109(3): 1204-1209.

Chen, J., Wiley, B., McLellan, J., Xiong, Y., Li, Z. & Xia, Y. 2005. Optical Properties of Pd−Ag and Pt−Ag Nanoboxes Synthesized via Galvanic Replacement Reactions. Nano Letters 5(10): 2058-2062.

Chen, S., Wang, Z L., Ballato, J., Foulger, S.H. & Carrol, D.L. 2003. Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals. Journal of The American Chemical Society 125(52): 16186-16187.

Gou, L. & Murphy, C.J. 2003. Solution-Phase Synthesis of Cu2O Nanocubes. Nano Letters 3(2): 231-234.

Hao, E., Bailey, R.C., Schatz, G.C., Hupp, J.T. & Li, S. 2004. Synthesis and Optical Properties of “Branched” Gold Nanocrystals. Nano Letters 4(2): 327-330.

Im, S.H., Lee, Y.T., Wiley, B. & Xia, Y. 2005. Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodispersity. Angewandte Chemie International Edition 44(14): 2154-2157.

Kambayashi, M., Zhang, J. & Oyama M. 2005. Crystal Growth of Gold Nanoparticles on Indium Tin Oxides in the Absence and Presence of 3-Mercaptopropyl-trimethoxysilane. Crystal Growth & Design 5(1): 81-84.

Kuo, C. & Huang, M.H. 2005. Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach. Langmuir 21(5): 2012-2016.

Lin, Z., Cai, J.J., Scriven L.E. & Davis, H.T. 1994. Spherical-to-Wormlike Micelle Transition in CTAB Solutions. The Journal of Physical Chemistry 98(23): 5984-5993.

Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E. & Li, T. 2005. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. The Journal of Physical Chemistry B 109(29): 13857-13870.

Oyama, M. 2010. Recent Nanoarchitectures in Metal Nanoparticle-modified Electrodes for Electroanalysis. Analytical Sciences 26(1): 1-12.

Oyama, M., Ali Umar, A. & Zhang, J. 2010. Recent Advances in Metal Nanoparticle-Attached Electodes. Advanced Nanomaterials, Vol. 1 (K. E. Geckeler and H. Nishide, Eds.). Wiley-VCH. P. 297-318.

Sun, Y. & Xia, Y. 2002. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 298: 2176-2179.

Törnblom, M. & Henriksson, U. 1997. Effect of Solubilization of Aliphatic Hydrocarbons on Size and Shape of Rodlike

C16TABr Micelles Studied by 2HNMRRelaxation. The Journal of Physical Chemistry B 101(31): 6028-6035.

Tsuji, M., Hashimoto, M., Nishizawa, Y., Kubokawa, M. & Tsuji, T. 2005. Microwave-Assisted Synthesis of Metallic Nanostructures in Solution. Chemistry – A European Journal 11(2): 440-452.

Wiley, B., Sun, Y., Mayers, B. & Xia, Y. 2005. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver. Chemistry – A European Journal 11(2): 454-463.

Wu, H., Liu, M. & Huang, M.H. 2006. Direct Synthesis of Branched Gold Nanocrystals and Their Transformation into Spherical Nanoparticles. The Journal of Physical Chemistry B 110(39): 19291-19294.

Xiong, Y., Chen, J., Wiley, B., Xia, Y., Aloni, S. & Yin, Y. 2005a. Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size. Journal of The American Chemical Society 127(20): 7332-7333.

Xiong, Y., McLellan, J.M., Chen, J., Yin, Y., Li, Z. & Xia, Y. 2005b. Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties. Journal of The American Chemical Society 127(48): 17118-17127.

Xiong, Y., Wiley, B., Chen, J., Xia, Y., Yin, Y. & Li, Z. 2005c. Size-Dependence of Surface Plasmon Resonance and Oxidation for Pd Nanocubes Synthesized via a Seed Etching Process. Nano Letters 5(7): 1237-1242.

Yu, D. & Yam, V.W. 2004. Controlled Synthesis of Monodisperse Silver Nanocubes in Water. Journal of The American Chemical Society 126(41): 13200-13201.

 

 

*Corresponding author; email: oyama.munetaka.4m@kyoto-u.ac.jp

 

 

 

 

 

 

 

 

 

previous