Sains Malaysiana 40(12)(2011): 1359–1367

 

Viscous Flow Due to a Permeable Stretching/Shrinking Sheet in a Nanofluid

(Aliran Likat dengan Helaian Meregang/Mengecut dalam Nanobendalir)

 

 

Norihan Md. Arifin

Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia

43400 UPMSerdang, Selangor D.E. Malaysia

 

Roslinda Nazar

School of Mathematical Sciences, Faculty of Science & Technology

& Solar Energy Research Institute, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E. Malaysia

 

Ioan Pop*

Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253, Romania

 

Received: 1 December 2010 / Accepted: 3 March 2011

 

ABSTRACT

 

The classical problems of forced convection boundary layer flow and heat transfer near the stagnation point on a permeable stretching/shrinking surface in a nanofluid is studied theoretically. The similarity equations were solved numerically for two types of nanoparticles, namely copper and silver in the base fluid of water with the Prandtl number Pr = 6.7850 to investigate the effect of the solid volume fraction or nanoparticle volume fraction parameter φ of the nanofluid. Also the case of conventional or regular fluid (φ = 0) with Pr = 0.7 is considered for comparison with previously known results from the open literature. The comparison showed excellent agreement. The skin friction coefficient, the Nusselt number and the velocity and temperature profiles were presented and discussed in detail. It was found that the nanoparticle volume fraction substantially affects the fluid flow and heat transfer characteristics.

 

Keywords: Boundary layer; heat transfer; nanofluid; stagnation-point flow; stretching/shrinking sheet

 

ABSTRAK

 

Masalah klasik bagi aliran lapisan sempadan olakan paksa dan pemindahan haba berdekatan titik genangan pada permukaan meregang/mengecut yang telap dalam nanobendalir telah dikaji secara teori. Persamaan keserupaan telah diselesaikan secara berangka bagi dua jenis nanozarah, iaitu kuprum dan perak dalam bendalir asas air dengan nombor Prandtl Pr = 6.7850 untuk mengkaji kesan parameter pecahan isipadu pepejal atau pecahan isipadu nanozarah φ bagi nanobendalir. Kes bagi bendalir biasa atau konvensional (φ = 0) dengan Pr = 0.7 dipertimbangkan bagi tujuan perbandingan dengan keputusan terdahulu yang diketahui. Hasil perbandingan tersebut adalah sangat baik. Pekali geseran kulit, nombor Nusselt serta profil-profil halaju dan suhu telah dipersembah dan dibincangkan dengan terperinci. Didapati bahawa pecahan isipadu nanozarah banyak mempengaruhi ciri-ciri aliran bendalir dan pemindahan haba.

 

Kata kunci: Aliran titik-genangan; helaian meregang/mengecut; lapisan sempadan; nanobendalir; pemindahan haba 

REFERENCES

 

Abu-Nada, E. 2010. Effects of variable viscosity and thermal conductivity of CuO-water nanofluid on heat transfer enhancement in natural convection: mathematical model and simulation. ASME J. Heat Transfer 132: 052401-1 – 052401-9.

Abu-Nada, E. 2008. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int. J. Heat Fluid Flow 29: 242-249.

Abu-Nada, E. & Oztop, H.F. 2009. Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow 30: 669-678.

Ahmad, S. & Pop, I. 2010. Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. Int. Comm. Heat Mass Transfer 37: 987-991.

Arifin, N.M., Nazar, R. & Pop, I. 2011. Non-isobaric Marangoni boundary layer flow for Cu, Al2O3 and TiO2 nanoparticles in a water based fluid. Meccanica 46: 833-843.

Bachok, N., Ishak, A. & Pop, I. 2010a. Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int. J. Thermal Sci. 49: 1663-1668.

Bachok, N., Ishak, A., Nazar, R. & Pop, I. 2010b. Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Physica B 405: 4914-4918.

Choi, S.U.S. 1995. Enhancing thermal conductivity of fluids with nanoparticles. In Development and Applications of non-Newtonian Flows, edited by D.A. Siginer & H.P. Wan. ASME MD-vol. 231 and FED-vol. 66.

Das, S.K., Choi, S.U.S., Yu, W. & Pradet, T. 2007. Nanofluids: Science and Technology. New Jersey: Wiley.

Daungthongsuk, W. & Wongwises, S. 2007. A critical review of convective heat transfer nanofluids. Renew. Sust. Eng. Rev. 11: 797-817.

Fang, T., Liang, W. & Lee, C.F. 2008. A new solution branch for the Blasius equation – a shrinking sheet problem. Comput. Math. Appl. 56: 3088-3095.

Ghasemi, B. & Aminossadati, S.M. 2010. Mixed convection in a lid-driven triangular enclosure filled with nanofluids. Int. Comm. Heat Mass Transfer 37: 1142-1148.

Goldstein, S. 1965. On backward boundary layers and flow in converging passages. J. Fluid Mech. 21: 33-45.

Harris, S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Trans. Porous Media 77: 267-285.

Hayat, T., Abbas, Z. & Sajid, M. 2007. On the analytic solution of magnetohydrodynamic flow of a second grade fluid over a shrinking sheet. ASME J. Appl. Mech. 74: 1165-1171.

Kakaç , S. & Pramuanjaroenkij, A. 2009. Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transfer 52: 3187-3196.

Khanafer, K., Vafai, K. & Lightstone, M. 2003. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transfer 46: 3639-3653.

Khan, W. A. & Pop, I. 2010. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transfer 53: 2477-2483.

Kuznetsov, A.V. & Nield, D.A. 2010. Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Thermal Sci. 49: 243-247.

Maxwell, J.C. 1881. A Treatise on Electricity and Magnetism 2nd edition. Oxford: Clarendon Press.

Meade, D.B., Haran, B.S. & White, R.E. 1996. The shooting technique for the solution of two-point boundary value problems. Maple Tech. 3: 85-93.

Merkin, J.H. 1985. On dual solutions occurring in mixed convection in a porous medium. J. Engng. Math. 20: 171-179.

Miklavčič, M. & Wang, C.Y. 2006. Viscous flow due to a shrinking sheet. Quart. Appl. Math. 46: 283-290.

Muthtamilselvan, M., Kandaswamy, P. & Lee, J. 2010. Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Comm. Nonlinear Sci. Numer. Simul. 15: 1501-1510.

Nazar, R., Tham, L. Pop, I. & Ingham, D.B. 2011. Mixed convection boundary layer flow from a horizontal circular cylinder embedded in a porous medium filled with a nanofluid. Trans. Porous Media 86: 547-566.

Nield, D.A. & Kuznetsov, A.V. 2009. The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52: 5792-5795.

Noor, N.F.M. & Hashim, I. 2009. MHD flow and heat transfer adjacent to a shrinking sheet embedded in a porous medium. Sains Malaysiana 38: 559-565.

Tadmor, Z. & Klein, I. 1970. Engineering Principles of Plasticating Extrusion. Polymer Science and Engineering Series, New York:Van Norstrand Reinhold.

Tiwari, R.K. & Das, M.K. 2007. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer 50: 2002-2018.

Trisaksri, V. & Wongwises, S. 2007. Critical review of heat transfer characteristics of nanofluids. Renew. Sustain. Energy Rev. 11: 512-523.

Wang, C.Y. 2008. Stagnation flow towards a shrinking sheet. Int. J. Non-Linear Mech. 43: 377-382.

Wang, X.-Q. & Mujumdar, A.S. 2008a. A review of nanofluids – Part I: theoretical and numerical investigations. Brazilian J. Chemical Engng. 25: 613-630.

Wang, X.-Q. & Mujumdar, A.S. 2008b. A review on nanofluids – Part II: Eexperimental and applications. Brazilian J. Chemical Engng. 25: 631-648.

Weidman, P.D., Kubitschek, D.G. & Davis, A.M.J. 2006. The effect of transpiration on self-similar boundary layer flow over moving surface. Int. J. Engng. Sci. 44: 730-737.

Yacob, N.A., Ishak, A., Nazar, R. & Pop, I. 2011. Falkner-Skan problem for a static and moving wedge with prescribed surface heat flux in a nanofluid. Int. Comm. Heat Mass Transfer 38: 149-153.

 

 

*Corresponding author; email: popm.ioan@yahoo.co.uk

 

 

 

 

 

 

previous