Sains Malaysiana 40(12)(2011): 1455–1459

 

On the Instability of Solutions of Nonlinear Delay Differential Equations of Fourth and Fifth Order

(Kestabilan Penyelesaian Persamaan Pembezaan Tunda Tak Linear Tertib ke Empat dan Lima)

 

 

Cemil Tunç*

Department of Mathematics, Faculty of Sciences, Yüzüncü Yıl University

65080, Van –Turkey

 

Received: 9 December 2010 / Accepted: 2 March 2011

 

ABSTRACT

 

The main purpose of this paper is to introduce some new instability theorems related to certain fourth and fifth order nonlinear differential equations with a constant delay. By means of the Lyapunov-Krasovskii functional approach, we obtained two new results on the topic.

 

Keywords: Delay differential equation; fourth and fifth order; instability; Lyapunov-Krasovskii functional

 

ABSTRAK

 

Objektif utama artikel ini ialah untuk memperkenalkan beberapa teorem ketakstabilan yang baru berkaitan dengan persamaan pembezaan tak linear tertib ke empat dan lima dengan tundaan malar. Melalui pendekatan fungsi Lyapunov-Krasovskii, dua keputusan baru dalam topic ini telah diperoleh.

 

Kata kunci: Fungsi Lyapunov-Krasovskii; ketakstabilan; persamaan pembezaan tunda; tertib ke empat dan lima

 

REFERENCES

 

Chlouverakis, K.E. & Sprott, J.C. 2006. Chaotic hyperjerk systems. Chaos Solitons Fractals 28(3): 739-746.

Dong, H.H. & Zhang, Y.F. 1999. Instability of some nonlinear systems of third and fourth orders. (Chinese) J. Luoyang Univ. 14(4): 11-14.

Èl’sgol’ts, L.È. 1966. Introduction to the Theory of Differential Equations with Deviating Arguments. Translated from the Russian by Robert J. McLaughlin Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam.

Ezeilo, J.O.C. 1978a. An instability theorem for a certain fourth order differential equation. Bull. London Math. Soc. 10 (2): 184-185.

Ezeilo, J.O.C. 1978b. Instability theorems for certain fifth-order differential equations. Math. Proc. Cambridge Philos. Soc. 84(2): 343-350.

Ezeilo, J.O.C. 1979a. A further instability theorem for a certain fifth-order differential equation. Math. Proc. Cambridge Philos. Soc. 86(3): 491-493.

Ezeilo, J.O.C. 1979b. Extension of certain instability theorems for some fourth and fifth order differential equations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 66(4): 239-242.

Ezeilo, J.O.C. 2000. Further instability theorems for some fourth order differential equations. J. Nigerian Math. Soc. 19: 1-7.

Hale, J.K. 1965. Sufficient conditions for stability and instability of autonomous functional-differential equations. J. Differential Equations 1: 452-482.

Ko, Y. 1999. The instability for functional-differential equations. J. Korean Math. Soc. 36(4): 757-771.

Krasovskii, N.N. 1963. Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay. Translated by J.L. Brenner Stanford. Stanford, Calif: University Press.

Linz, S. J. 2008. On hyperjerky systems. Chaos Solitons Fractals 37(3): 741-747.

Li, W & Duan, K. 2000. Instability theorems for some nonlinear differential systems of fifth order. J. Xinjiang Univ. Natur. Sci. 17(3): 1-5.

Li, W.J. & Yu, Y.H. 1990. Instability theorems for some fourth-order and fifth-order differential equations. (Chinese) J. Xinjiang Univ. Natur. Sci. 7(2): 7-10.

Lu, D.E. & Liao, Z.H. 1993. Instability of solution for the fourth order linear differential equation with varied coefficient. Appl. Math. Mech. (English Ed.) 14(5): 481-497; translated from Appl. Math. Mech. 14(5): 455-469 (Chinese).

Sadek, A.I. 2003. Instability results for certain systems of fourth and fifth order differential equations. Appl. Math. Comput. 145(2-3): 541-549.

Skrapek, W.A. 1980. Instability results for fourth-order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 85(3-4): 247-250.

Sun, W.J. & Hou, X. 1999. New results about instability of some fourth and fifth order nonlinear systems. (Chinese) J. Xinjiang Univ. Natur. Sci. 16(4): 14-17.

Tiryaki, A. 1988. Extension of an instability theorem for a certain fourth order differential equation. Bull. Inst. Math. Acad. Sinica 16(2): 163-165.

Tunç, C. 2004a. On the instability of solutions of certain nonlinear vector differential equations of fifth order. Panamer. Math. J. 14(4): 25-30.

Tunç, C. 2004b. An instability theorem for a certain vector differential equation of the fourth order. JIPAM. J. Inequal. Pure Appl. Math. 5(1): Article 5, 5 pp. (electronic).

Tunç,C. 2005. An instability result for a certain non-autonomous vector differential equation of fifth order. Panamer. Math. J. 15(3): 51-58.

Tunç, C. 2006. A further instability result for a certain vector differential equation of fourth order. Int. J. Math. Game Theory Algebra 15(5): 489-495.

Tunç, C. 2008. Further results on the instability of solutions of certain nonlinear vector differential equations of fifth order. Appl. Math. Inf. Sci. 2(1): 51-60.

Tunç, C. 2009. Instability of solutions for certain nonlinear vector differential equations of fourth order. Nelīnīĭnī Koliv. 12 (1): 120-129; translation in Nonlinear Oscil. (N.Y.) 12(1): 123-132.

Tunç, C. & Tunç, E. 2004. A result on the instability of solutions of certain non-autonomous vector differential equations of fourth order. East-West J. Math. 6(2): 153-160.

Tunç, C. & Erdoğan, F. 2007. On the instability of solutions of certain non-autonomous vector differential equations of fifth order. SUT J. Math. 43(1): 35-48.

Tunç, C.& Karta, M. 2008. A new instability result to nonlinear vector differential equations of fifth order. Discrete Dyn. Nat. Soc. Art. ID 971534, 6 pp.

Tunç, C. & Şevli, H. 2005. On the instability of solutions of certain fifth order nonlinear differential equations. Mem. Differential Equations Math. Phys. 35: 147-156.

 

 

*Corresponding author; email: cemtunc@yahoo.com

 

 

 

 

 

 

 

previous