Sains Malaysiana
40(1)(2011): 21–25
Testing and
Calibration of an Ultraviolet-A Radiation Sensor Based on GaN Photodiode
(Pengujian dan
Penentukuran Sensor Sinaran Ultra Lembayung-A Berasaskan Fotodiod GaN)
J. Theyirakumar1*, G. Gopir1,2, B. Yatim1,2, H. Sanusi2,3, P.S. Megat Mahmud1 & T.C. Hoe1
1School of
Applied Physics, Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2Institute of
Space Science, Universiti Kebangsaan Malaysia
43600
Bangi, Selangor, Malaysia
3Department of
Electrical
Electronic and Systems
Engineering, Faculty of Engineering and Built Environment
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor, Malaysia
Received: 7 December 2009 / Accepted:
13 July 2010
ABSTRACT
An ultraviolet A (UVA)
radiation intensity sensor with responsivity in the wavelength range of 320-360
nm was developed based on a gallium nitride (GaN) photodiode. In this sensor
system, a GaN photodiode in reverse-biased mode converts the radiation intensity
into current, which was then converted and amplified into an output voltage by
a transimpedance amplifier (TIA), or current-voltage
converter, consisting of an operational amplifier and a feedback resistor. For
a narrowband UV source, the radiation intensity could be calculated
from the values of the output voltage, feedback resistor, photodiode
responsivity and photodiode effective area. The sensor was tested by performing
measurements over different values of UV source wavelength, source
distance, ambient temperature and sampling time. For calibration with a
broadband UV source, the GaN-UVA sensor was used
simultaneously with a standard Si-UVA sensor to measure solar
radiation. The observed linear relationship between the sensors’ outputs
enables us to convert the output voltage of the GaN-UVA sensor
to UVA intensity. Thus, we have successfully developed,
tested and calibrated an ultraviolet A radiation sensor based on the GaN
photodiode.
Keywords: GaN photodiode;
radiation sensor; transimpedance amplifier; ultraviolet A
ABSTRAK
Sebuah sensor keamatan
sinaran ultra lembayung A (ULA) dengan responsiviti dalam julat
panjang gelombang 320-360 nm telah dibangunkan berasaskan fotodiod galium
nitrida (GaN). Dalam sistem sensor ini, fotodiod GaN dalam keadaan
pincang-balikan menukarkan keamatan sinaran kepada arus, yang kemudiannya
ditukar dan diperbesarkan kepada voltan output oleh amplifier transimpedans (ATI),
atau penukar arus-voltan, yang mengandungi amplifier operasian dan perintang
suapbalik. Bagi sumber UL berjalur sempit, keamatan sinaran
dapat ditentukan daripada nilai-nilai voltan output, rintangan suapbalik,
responsiviti fotodiod dan keluasan berkesan fotodiod. Sensor ini diuji dengan
melakukan pengukuran ke atas nilai-nilai berbeza bagi panjang gelombang sumber UL,
jarak sumber, suhu ambien dan masa persampelan. Bagi penentukuran dengan sumber UL berjalur lebar, sensor GaN-ULA digunakan secara serentak
dengan sensor Si-ULA piawai untuk mengukur sinaran
suria. Cerapan hubungan linear antara kedua-dua output sensor membolehkan kita
menukar voltan output sensor GaN-ULA kepada keamatan sinaran ULA.
Dengan itu, sensor sinaran ultra lembayung A berasaskan fotodiod GaN telah
berjaya dibangunkan, diuji dan ditentukurkan dalam kajian ini.
Kata kunci: Amplifier
transimpedans; fotodiod GaN; sensor sinaran; ultra lembayung A
REFERENCES
Budde,
W. 1983. Optical Radiation Measurement: Physical Detectors of Optical
Radiation. Vol. 4. New York: Academic Press.
Chow,
P.P., Klaassen, J.J., VanHove, J.M., Wowchak, A., Polley, C. & King, D.
2000. Group-III nitride materials for ultraviolet detection applications. Proc.
SPIE Photodetectors: Materials and Devices V, 3948: 295-303.
Diffey,
B.L. 2002. Sources and measurement of ultraviolet radiation. Methods 28:
4-13.
Dupuis,
R.D., Ryou, J.H., Shen, S.C., Yoder, P.D., Zhang, Y., Hee, J.K., Choi, S. &
Lochner, Z. 2008. Growth and fabrication of high-performance GaN-based
ultraviolet avalanche photodiodes. Journal of Crystal Growth 310:
5217-5222.
Kasap,
S.O. 2001. Optoelectronics and Photonics. Upper Saddle River:
Prentice-Hall.
Ilyas,
M., Pandy, A. & Jaafar, M.S. 2001. Changes to the surface level solar
ultraviolet-B radiation due to haze pertubation. Journal of Atmospheric
Chemistry 40: 111-121.
Monroy,
E., Omnes, F. & Calle, F. 2003. Wide-bandgap semiconductor ultraviolet
photodetectors. Semiconductor Science Technology 18: R33-R51.
Nashelsky,
L. & Boylestad, R.L. 2006. Electronic devices and circuit theory.
9th ed. Upper Saddle River: Pearson Prentice Hall.
Sandvik,
P., Mi, K., Shahedipour, F., McClintock, R., Yasan, A., Kung, P. & Razeghi,
M. 2001. AlxGa1-xN for solar-blind UV detectors. Journal
of Crystal Growth 231: 366-370.
Theyirakumar,
J., Gopir, G., Yatim, B., Sanusi, H., Megat Mahmud, P.S., Woon, C.Y. & Tan,
K.A.B. 2009. Calibration of a newly designed multispectral ultraviolet sensor
based on AIGaN photodiodes using solar radiation. Proc. 2009 Int. Conf. on
Space Science and Communications (ICONSPACE), 26–27 October, Port Dickson 99-104.
Vazquez,
M. & Hanslmeier, A. 2006. Ultraviolet Radiation in the Solar System.
Dordrecht: Springer.
Zhang,
J.Y. & Boyd, I.W. 2000. Lifetime investigation of excimer UV sources. Applied
Surface Science 168: 296-299.25
*Corresponding author; email: juliah275@yahoo.com
|