Sains Malaysiana
40(1)(2011): 5–8
Characterization of
Ge Nanostructures Embedded Inside Porous Silicon for Photonics Application
(Pencirian Nanostruktur Ge Terbenam di dalam Silikon Berliang
untuk Aplikasi Fotonik)
A.F. Abd Rahim 1,2 *, M.R. Hashim1 & N.K. Ali3
1School of Physics, Universiti Sains Malaysia, 11800 Penang,
Malaysia
2Faculty of Electrical Engineering, Universiti Teknologi MARA, 13500
Permatang Pauh, Penang Malaysia
3Faculty of Electrical Engineering
Department of Electronic Engineering, Universiti Teknologi
Malaysia
81310 Skudai, Johor, Malaysia
Received: 7 December 2009 / Accepted: 13 July 2010
ABSTRACT
In this work we prepared
germanium nanostructures by means of filling the material inside porous silicon
(PS)
using conventional and cost effective technique, thermal evaporator. The PS acts
as patterned substrate. It was prepared by anodization of silicon wafer in
ethanoic hydrofluoric acid (HF). A Ge layer was then
deposited onto the PS by thermal evaporation. This was
followed by deposition of Si layer by thermal evaporation and anneal at 650οC
for 30 min. The process was completed by Ni metal deposition using thermal
evaporator followed by metal annealing of 400οC
for 10 min to form metal semiconductor metal (MSM)
photodetector. Structural analysis of the samples was performed using energy
dispersive x-ray analysis (EDX), scanning electron microscope (SEM),
X-ray diffraction (XRD) and Raman spectroscopy (RS). EDX spectrum suggests the presence of Ge inside the pores structure.
Raman spectrum showed that good crystalline structure of Ge can be produced
inside silicon pores with a phase with the diamond structure by (111), (220)
and (400) reflections. Finally current-voltage (I-V) measurement of the MSM photodetector
was carried out and showed lower dark currents compared to that of Si control
device. Interestingly the device showed enhanced current gain compared to Si
device which can be associated with the presence of Ge nanostructures in the
porous silicon
Keywords: Ge; porous;
Raman spectroscopy; silicon thermal evaporation
ABSTRAK
Di dalam kajian ini nano
struktur Ge disediakan dengan mengisi Ge ke dalam liang Si menggunakan kaedah
konvensional dan kos efektif iaitu penyejatan haba. Si berliang bertindak sebagai
substrat yang beracuan. Si berliang disediakan melalui proses anodisasi wafer
Si di dalam larutan asid HF bersama etanol. Lapisan Ge
diendapkan di atas liang Si ini menggunakan teknik penyejatan haba. Kemudian
proses diteruskan dengan endapan lapisan Si menggunakan teknik yang sama dan
dipanaskan pada suhu 650οC selama 30 min. Proses ini
disempurnakan dengan mengendap logam Ni sebagai sesentuh menggunakan teknik
penyejatan haba dan diikuti dengan pemanasan logam sentuh pada suhu 400οC
selama 10 min bagi membina pengesan cahaya logam-separuh pengalir-logam.
Analisis struktur bahan kajian dilaksanakan menggunakan teknik EDX, SEM, XRD dan spektroskopi Raman. Spektrum EDX mencadangkan
kehadiran Ge di dalam struktur liang Si. Spektrum Raman menunjukkan struktur
hablur yang baik bagi Ge dapat dihasilkan di dalam liang Si dengan kehadiran
fasa berbentuk intan dengan pantulan pada satah (111), (200) dan (400).
Akhirnya pengukuran arus voltan untuk pengesan cahaya yang dibina menunjukkan
arus gelap yang rendah berbanding arus gelap peranti kawalan Si. Menariknya,
peranti pengesan cahaya ini menunjukkan peningkatan gandaan arus berbanding
peranti Si dan ini boleh dikaitkan dengan kehadiran struktur nano Ge di dalam
liang Si.
Kata kunci: Ge;
penyejatan haba; Si berliang; spektroskopi raman
REFERENCES
Baharin, A. &
Hashim, M.R. 2007. Study of electrical characteristics of Ge islands MSM
photodetector structure grown on Si substrate using conventional methods. Semiconductor
Science and Technology 22(8): 905-910.
Balagurov, L.A.,
Bayliss, S.C., Andrushin, S. Ya., Orlov, A.F., Unal, B., Yarkin, D.G. &
Petrova, E.A. 2001. Metal/PS/c-Si photodetectors based on unoxidized and
oxidized porous silicon. Solid-State Electronics 45(9): 1607-1611.
Caldelas, P., Rolo,
A.G., Gomes, M.J.M., Alves, E., Ramos, A.R., Conde, O., Yerci, S. & Turan,
R. 2008. Raman and XRD studies of Ge nanocrystals in alumina films grown by
RF-magnetron sputtering. Vacuum 82(12): 1466-1469.
Chen, P.S., Pei,
Z., Lee, S.W., Tsai, M.J. & Liu, C.W. 2004. Nanostructures and optical
properties of self-assembled Ge quantum dots grown in a hot wall UHV/CVD
system. Proceedings -205th meeting of Electrochemical Society, May, San
Antonio.
Cheng, M.H., Ni,
W.X., Luo, G.L., Huang, S.C., Chang, J.J. & Lee, C.Y. 2008. Growth and
characterization of Ge nanostructures selectively grown on patterned Si. Thin
Solid Films 517(1): 57-61.
Jayachandran, M.,
Paramasivam, M., Murali, K.R., Trivedi, D.C. & Ragharan, M. 2001. Synthesis
of porous silicon nanostructures for photoluminescent devices. Materials
Physics and Mechanics 4: 143.
Jin, Chang-Beom,
Jee-Eun Yang, & Moon-Ho Jo. 2006. Shape-controlled growth of
single-crystalline Ge nanostructures. Applied Physics Letters 88(19):
193105-3.
Krasil’nik, Z.F.,
Lytvyn, P., Lobanov, D.N., Mestres, N., Novikov, A.V., Pascual, J., Ya Valakh,
M. & Yukhymchuk, V.A. 2002. Microscopic and optical investigation of Ge
nanoislands on silicon substrates. Nanotechnology 13(1): 81-85.
Lei, Zhen-Kun,
& Kang, Yi-Lau, Cen Hao, Hu Ming & Qiu Yu. 2005. Residual stress on
surface and cross-section of porous silicon studied by micro-raman
spectroscopy. Chinese Physics Letters 22(4): 984-986.
Liu, Feng-Qi,
Zhan-Guo Wang, Guo-Hua Li & Guang-Hou Wang. 1998. Photoluminescence from Ge
clusters embedded in porous silicon. Journal of Applied Physics 83(6):
3435-3437.
Maeda, Yoshihito,
Nobuo Tsukamoto, Yoshiaki Yazawa, Yoshihiko Kanemitsu & Yasuaki Masumoto.
1991. Visible photoluminescence of Ge microcrystals embedded in SiO[sub 2]
glassy matrices. Applied Physics Letters 59(24): 3168-3170.
Schittenhelm, P.,
Gail, M. & Abstreiter, G. 1995. Self-organized MBE growth of Ge-rich SiGe
dots on Si(100). Journal of Crystal Growth 157(1-4): 260-264.
Yang, Min, Daming
Huang, Pinghai Hao, Fulong Zhang, Xiaoyuan Hou & Xun Wang. 1994. Study of
the Raman peak shift and the linewidth of light-emitting porous silicon. Journal
of Applied Physics 75(1): 651-653.
*Corresponding
author; email: alhan570@ppinang.uitm.edu.my
|