Sains Malaysiana
40(1)(2011): 75–78
Ion Conductive
Polymer Electrolyte Membranes and Simulation of Their Fractal Growth Patterns
(Membran Polimer
Elektrolit Konduksian Ion dan Simulasi Pola-pola Pertumbuhan Fraktal)
S. Amir1, *, S.A. Hashim Ali2 & N.S. Mohamed1
1Pusat Asasi Sains, University of Malaya
50603 Kuala Lumpur, Malaysia
2Institute of Mathematical Sciences, Faculty of Science
University of Malaya, 50603 Kuala Lumpur, Malaysia
Received: 7 December 2009 / Accepted: 15 July 2010
ABSTRACT
Due to their high ionic
conductivity, solid polymer electrolyte (SPE) systems have attracted
wide spread attention as the most appropriate choice to fabricate
all-solid-state electrochemical devices, namely batteries, sensors and fuel
cells. In this work, ion conductive polymer electrolyte membranes have been
prepared for battery fabrication. However, fractals were found to grow in these
polymer electrolyte membranes weeks after they were prepared. It was believed
that the formation of fractal aggregates in these membranes were due to ionic
movement. The discovery of fractal growth pattern can be used to understand the
effects of such phenomenon in the polymer electrolyte membranes. Digital images
of the fractal growth patterns were taken and a simulation model was developed
based on the Brownian motion theory and a fractal dialect known as L-system. A
computer coding has been designed to simulate and visualize the fractal growth.
Keywords: Fractal; polymer
electrolytes; simulation
ABSTRAK
Disebabkan kekonduksian
ionik yang tinggi, sistem polimer elektrolit pepejal (SPE)
telah menarik perhatian meluas sebagai pilihan paling sesuai untuk memfabrikasi
alat elektrokimia keadaan pepejal sepenuhnya, iaitu bateri, pengesan dan sel
bahan bakar. Dalam kerja penyelidikan ini, membran polimer elektrolit
konduksian ion telah disediakan untuk penyediaan bateri. Bagaimanapun, fraktal
telah didapati tumbuh dalam membran polimer elektrolit ini beberapa minggu
selepas disediakan. Adalah dipercayai pembentukan agregat fraktal dalam membran
ini ialah disebabkan oleh pergerakan ion. Penemuan corak pertumbuhan fraktal
boleh digunakan bagi memahami kesan fenomena pergerakan ion dalam membran
polimer elektrolit. Imej-imej digital pola-pola pertumbuhan fraktal telah
diambil dan satu model simulasi dibangunkan berasaskan teori pergerakan Brown
dan dialek fractal dikenali sebagai L-sistem. Pengekodan komputer telah
direkabentuk bagi mensimulasi dan menggambarkan pertumbuhan fraktal.
Kata kunci: Elektrolit
polimer; fraktal; simulasi
REFERENCES
Amir,
S. 2008. Modeling and Simulation of Fractal Growth Pattern, M.Phil. Thesis,
University of Malaya.
Amir,
S., Mohamed, N.S. & Hashim Ali. S.A. 2007. Simulation of the Fractal
Patterns in Polymer Membranes. Proceeding in IEECI 2007: 919-922.
Amir,
S., Mohamed, N.S. & Hashim Ali, S.A. 2008. Simulation of Complex Geometric
Patterns in Polymer Films. Matematika, Special Edition, Part 1: 207-211.
Amir,
S., Mohamed, N.S. & Hashim Ali, S.A. 2010. Simulation model of the fractal
patterns in ionic conducting polymer films. Cent. Eur. J. Phys. 8(1):
150-156.
Barkey,
D. 1991. Morphology selection and the concentration boundary layer in
electrochemical deposition. J. Electrochem. Soc. 138: 2912-2917.
Chandra,
A. 1996. Anion clustering and fractal pattern growth in ion conducting
polymeric matrix. Solid State Ionics 86-88: 1437-1442.
Chandra,
A. & Chandra, S. 1994. Experimental observation of large-size fractals in
ion-conducting polymer electrolyte films, Physical Review B 49(1):
633-636.
Harun,
M.H., Saion, E., Kassim, A., Yahya, N. & Mahmud, E. 2007. Conjugated
conducting polymers: A brief overview. UCSI Academic Journal: Journal for
the Advancement of Science & Arts 2: 63-68.
Horie, K., Barón,
M., Fox, R.B., He, J., Hess, M., Kahovec, J., Kitayama, T., Kubisa, P.,
Maréchal, E., Mormann, W., Stepto, R.F.T., Tabak, D., Vohlídal, J., Wilks, E.S.
& Work, W. J. 2004
Definitions of terms relating to reactions of polymers and to
functional polymeric materials (IUPAC Recommendations 2003). Pure Appl.
Chem. 76(4): 889-906.
Kaufmann,
J.H., Nazzal, A.I. & Melroy, O.R. 1987. Onset of fractal growth: Statics
and dynamics of diffusion-controlled polymerization. Phys. Rev. B 35:
1881-1890.
Kleinert,
H. 2004. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics,
and Financial Markets. 4th edition. Singapore: World Scientific.
Mohamed,
N.S. & Arof, A.K. 2001. Fractal like dendritic crystals of lithium
tetrafluoroborate in chitosan acetate films. Malaysian Journal of Analytical
Sciences 6(1): 71-74.
Okubo,
S., Mogi, I., Kido, G. & Nakagawa, Y. 1993. Effect of high magnetic fields
on fractal growth of silver metal-forest. Fractals 1: 425-429.
Prusinkiewicz,
P. & Lindenmayer, A. 2004. The Algorithmic Beauty of Plants. Springer-Verlag.
Stephan,
A.M. 2006. Review on gel polymer electrolytes for lithium batteries. European
Polymer Journal 42(1): 21-42.
Suki,
M.N., Mohamed, N.S., Hashim Ali, S.A. & Zainuddin, R. 2007. The role of
image processing in measuring fractal dimension. Malaysian Journal of
Science: 23-33.
Witten
Jr, T.A. & Sander, L.M. 1981. Diffusion-limited aggregation, a kinetic
critical phenomenon. Phys. Rev. Lett. 47: 1400-1403.
*Corresponding
author; email:shahizat@um.edu.my
|