Sains Malaysiana
40(2)(2011): 119–124
Is
the High Cu Tolerance of Trichoderma atroviride Isolated from the
Cu-Polluted Sediment Due to Adaptation? An In Vitro Toxicological Study
(Adakah Ketahanan Trichoderma
atroviride yang Diasingkan daripada Sedimen Tercemar Cu
disebabkan oleh
Adaptasi? Satu Kajian Toksikologi In Vitro)
C.K.
Yap*, M. Yazdani & F. Abdullah
Department
of Biology, Faculty of Science
Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
S.G.
Tan
Department
of Cell and Molecular Biology
Faculty
of Biotechnology and Bimolecular Sciences
Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
Received:
5 March 2009 / Accepted: 9 July 2010
ABSTRACT
The tolerance of Cu by Trichoderma
atroviride, a tolerant fungus isolated from the drainage surface sediment of
the Serdang Industrial Area was investigated under in vitro conditions.
Only this fungus species can tolerate up to 600 mg/L of Cu on solid medium
Potato Dextrose Agar based on the isolation of the most tolerant fungus from
the polluted sediment. Toxicity test performed on T. atroviride, showed
a maximum tolerance at 300 mg/L of Cu concentration when grown in liquid medium
Potato Dextrose Broth (PDB). The EC50 value
of the isolate was 287.73 mg/L of Cu concentration in PDB.
The Cu concentration in the drainage surface sediment, where the T.
atroviride was isolated from, was 347.64 μg/g while the geochemical
distributions of the non-resistant and resistant fractions of Cu were 99.6 and
0.4%, respectively. The sediment data indicated that the drainage had greatly
received anthropogenic Cu from the nearby industries which are involved in the
manufacturing of plastics and electronic products. The present findings
indicate that the high Cu tolerance showed by T. atroviride could be due
to the well adaptation of the fungus to the Cu polluted sediment. Therefore, T.
atroviride could be a potential bioremediator of Cu pollution in the
freshwater ecosystem.
Keywords: EC50;
geochemical distributions of Cu; toxicity test; Trichoderma
atroviride
ABSTRAK
Ketahanan Trichoderma
atroviride, sejenis kulat toleran yang telah diasingkan dari permukaan
sedimen longkang kawasan perindustrian Serdang, telah dikaji di bawah keadaan in
vitro. Hanya kulat spesies ini sahaja yang boleh bertahan hingga kepekatan
Cu 600 mg/L pada medium pepejal ‘Potato Dextrose Agar’ berdasarkan kepada
pengasingan kulat yang paling tahan dalam sedimen tercemar. Melalui ujian
ketoksikan dengan menggunakan T. atroviride, didapati bahawa ketahanan
maksimum spesies ini dalam cecair medium ‘Potato Dextrose Broth’(PDB)
adalah pada kepekatan Cu 300 mg/L. Nilai pengasingan EC50 bagi
kepekatan Cu dalam PDB ialah 287.73 mg/L. Kepekatan Cu
dalam sedimen permukaan longkang, di mana T. atroviride telah
diasingkan, ialah 347.64 μg/g manakala taburan bahagian-bahagian geokimia
tak rintang dan rintang Cu masing-masing ialah 99.6 dan 0.4%. Data Cu dalam
sedimen menunjukkan bahawa longkang tersebut telah menerima Cu antropogenik
dari kawasan-kawasan perindustrian seperti plastik dan produk elektronik.
Kajian ini menunjukkan bahawa ketahanan T. atroviride terhadap Cu yang
tinggi mungkin disebabkan oleh adaptasi kulat tersebut terhadap sedimen yang
tercemar dengan Cu. Oleh itu, T. atroviride adalah berpotensi sebagai
‘bioremediator’ bagi pencemaran Cu dalam ekosistem air tawar.
Kata kunci: Cu, EC50; taburan geokimia; Trichoderma
atroviride; ujian ketoksikan
REFERENCES
Aleem, A., Isar, J.
& Malik, A. 2003. Impact of long-term application of industrial wastewater
on the emergence of resistance traits in Azotobacter chroococcum isolated
from rhizospheric soil. Bioresource Technology 86: 7-13.
Anand, P., Isar,
J., Saran, S. & Saxena, R.K. 2006. Bioaccumulation of copper by Trichoderma
viride. Bioresource Technology 97: 1018-1025.
Badri, M.A. &
Aston, S.R. 1983. Observation on heavy metal geochemical associations in
polluted and non-polluted estuarine sediments. Environmental Pollution Ser
B, 6: 181-93.
Chen, M. H. &
Wu, H.T. 1995. Copper, cadmium and lead in sediment from the Kaoshiung River
and its harbour area, Taiwan. Marine Pollution Bulletin 30: 879-884.
Cheung, K.C., Poon,
B.H.T., Lan, C.Y. & Wong, M.H. 2003. Assessment of metal and nutrient
concentrations in river water and sediment collected from the cities in the
Pearl River Delta, South China. Chemosphere 52: 1431-1440.
Colpaert, J.V.,
& Van Assche, J.A. 1992. Zinc toxicity in ectomycorrhizal Pinus
sylvestris. Plant and Soil 143: 201-211.
Forstner, U.,
Wittmann, G. 1981. Metal Pollution in the Aquatic Environment. Berlin:
Springer.
Garcıa-Toledo,
A., Babich, H. & Stotzky, G. 1985. Training of Rhizopus stolonifer and Cunninghamella blakesleeana to copper: cotolerance to cadmium, cobalt,
nickel and lead. Canadian Journal of Microbiology 31: 485-492.
Hartley, J.,
Cairney, J.W.G. & Meharg, A.A. 1997. Do ectomycorrhizal fungi exhibit
adaptive tolerance to potentially toxic metals in the environment ? Plant
and Soil 189: 303-319.
Lau, S., Mohamed,
M. & Su’ut, S. 1996. Logru berat di dalam sedimen sebagai penyurih kepada
punca pencemaran Sungai Sarawak. Malaysian Journal of Analytical Sciences 2:
365-371 (In Malay).
Liang, Y. &
Wong, M.H. 2003. Spatial and temporal organic and heavy metal pollution at Mai
Po Marshes nature reserve, Hong Kong. Chemosphere 52: 1647-1658.
Lim, P. E. &
Kiu, M.Y. 1995. Determination and speciation of heavy metals in sediments of
Juru River, Pulau Pinang, Malaysia. Environmental Monitoring and Assessment 32:
89-95.
Lopez
Errasquın, E. & Vazquez, C. 2003. Tolerance and uptake of heavy metals
by Trichoderma atroviride isolated from sludge. Chemosphere 50:
137-143.
Mushrifah, I.,
Ahmad, A. & Badri, M.A. 1995. Heavy metals content in sediments of
Terengganu River, Malaysia. Toxicological and Environmental Chemistry 51:
181-190.
Nacorda, J. O.,
Martinez-Goss, M.R., Torreta, N.K. & Merca, F.E. 2007. Metal resistance and
removal by two strains of the green alga, Chlorella vulgaris Beijerinck,
isolated from Laguna de Bay, Philippines. Journal of Applied Phycology 19:
701-710.
Rosen, G., Osorio-Robayo,
A., Rivera-Duarte, I. & Lapota, D. 2008. Comparison of bioluminescent
dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the
detection of metal and ammonia toxicity. Archives of Environmental
Contamination and Toxicology 54(4): 606-611.
Saed, K. 2001.
Ecotoxicology of heavy metals (Cd, Pb, Zn and Cu) in flat tree oysters isognomon
alatus (Gmelin) from Sepang, Malaysia. PhD Thesis Faculty of Science,
Universiti Putra Malaysia, Serdang.
Sahibin, A.R.,
Ramlan, O., Mohamad, M.T. & Lim, S.S. 2000. Minor element content in
estuary and coastal sediment samples from Tanjung Karang and Pulau Langkawi. In Towards Sustainable Management of the Straits of Malacca. edited by M.
Shariff, F.M. Yussoff, N. Gopinath, H.M. Ibrahim & R.A. Nik Mustapha, P.
365-379 Malacca Straits Research and Development Centre (MASDEC), Universiti
Putra Malaysia, Serdang, Malaysia.
Sin, S.N., Chua,
H., Lo, W. & Ng, L.M. 2001. Assessment of heavy metal cations in sediments
of Shing Mun River, Hong Kong. Environment International 26: 297-301.
Sin, Y.M., Wong,
M.K., Chou, L.M. & Normala, A. 1991. A study of the heavy metal contents of
the Singapore River. Environmental Monitoring and Assessment 19: 81-84.
Spijkerman, E.,
Barua, D., Gerloff-Elias, A., Kern, J., Gaedke, U. & Heckathorn, S.A. 2007.
Stress responses and metal tolerance of Chlamydomonas acidophila in
metal-enriched lake water and artificial medium. Extremophiles 11:
551-562.
Subramanyam, C.
& Gupta, P.D. 1986. Glycogen deposition in Neurospora crassa under
conditions of copper toxicity: a correlative ultra structural and biochemical
study. Microbiologica 45: 55-62.
Tanner, P., Leong,
L.S. & Pan, S.M. 2000. Contamination of heavy metals in marine sediment
cores from Victoria Harbour, Hong Kong. Marine Pollution Bulletin 40:
769-779.
Tokalioglu, S.,
Kartal, S. & Elei, L. 2000. Determination of heavy metals and their
speciation in lake sediments by flame atomic
spectrometry after a four-stage sequential extraction procedure. Analytical
Chimica Acta 413: 33-40.
Tsekova, K. & Todorova, D.
2002. Copper (II) accumulation and superoxide dismutase activity during growth
of Aspergillus niger B- 77. Z. Naturforch 57c: 319-322.
Venkateswerlu, G., Yoder, M.J.
& Stotzky, G. 1989. Morphological, ultra structural and chemical changes
induced in Cunninghamella blakesleeana. Applied Microbiology
Biotechnology 31: 619-625.
Yap, C.K., Ismail, A., Tan, S.G.
& Omar, H. 2002. Correlation between speciation of Cd, Cu, Pb and Zn in
sediment and their concentrations in total soft tissue of green-lipped mussel Perna
viridis from the west coastal of Peninsular Malaysia. Environment
International 28: 117-126.
Yap, C.K., Ismail, A. & Tan,
S.G. 2003. Different soft tissues of the green-lipped mussel Perna viridis (Linnaeus)
as biomonitoring agents of copper: Field and laboratory studies. Malaysian
Applied Biology 32(2): 9-18.
Yap, C.K., Ismail, A., Omar, H.
& Tan, S.G. 2004. Toxicities and tolerances of Cd, Cu, Pb and Zn in a
primary producer (Isochrysis galbana) and in a primary consumer (Perna
viridis). Environment International 29: 1097-1104.
Zapotoczny, S., Jurkiewicz, A.,
Tylko, G., Anielska, T. & Turnau, K. 2006. Accumulation of copper by Acremonium
pinkertoniae, a fungus isolated from industrial wastes. Microbiological
Research 26: 198-298.
*Corresponding author; email:
yapckong@hotmail.com
|